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ABSTRACT

Positioning services are increasingly used for applications such as
navigation, advertising and social media. While outdoor navigation
based on GPS and/or cellular systems works well, indoor navigation
is a much tougher challenge. This paper presents a new indoor posi-
tioning method based on Wi-Fi fingerprints, i.e. RSSI measurements
from multiple Wi-Fi access points. During an offline phase, finger-
prints are collected at known positions in the building. This database
of locations and the associated fingerprints are called the radio map.
In the online mode, the current Wi-Fi fingerprint probability distribu-
tions are compared with those of the radio map. The user location is
estimated by calculating a weighted average of the three offline po-
sitions that best match the online measurements. Experiments show
that our technique is superior to other proposed methods and reaches
a median error of 2.4m.

Index Terms— Indoor positioning, Wireless LAN, Signal
strength fingerprint, Probability distribution, Bhattacharyya distance

1. INTRODUCTION

Recently, positioning systems such as GPS [1] have become very
popular and have made possible a large range of applications. How-
ever, most actual techniques, especially those requiring satellite cov-
erage, are not suitable for indoor positioning. And, as nearly all
modern buildings are equipped with Wi-Fi access points, indoor po-
sitioning using IEEE 802.11 standard has now become a realistic
alternative. Moreover, recent smartphones are commonly equipped
with Wi-Fi sensors, which makes them adequate devices to imple-
ment such an indoor positioning system. The range of potential ap-
plications is very large. Indoor positioning systems could be used to
give access to an interactive map of a building. For example, they
could orientate a person through an airport to the boarding gate, help
a student find his classroom or facilitate the way of finding items of
a shopping list in a supermarket.

One successful approach for indoor positioning is based on
Wi-Fi fingerprints [2]. It is applicable to scenarii with severe mul-
tipath unlike triangulation techniques where the distance to the
base-stations need to be estimated based on time-of-arrival, round-
trip-time or signal strength attenuation [3]. Moreover, those tech-
niques often require uninterfered propagation paths to work well.
The fingerprint-based algorithms work differently and contain two
phases: an offline and an online phase. The purpose of the offline
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phase is to collect information about the Wi-Fi access points signal
strengths at different locations. During the online phase, the mea-
sured signal strengths are compared to the offline measurements in
order to estimate the user position.

For example, the positioning system RADAR [4] uses the Eu-
clidean distance between vectors of strengths as a similarity criterion
while the conditional joint probabilities are suggested in [5] and [6].

In an attempt to improve the accuracy of fingerprint-based in-
door positioning systems, we propose a new method that compares
online and offline signal strength probability distributions in order
to find the nearest offline locations. Contrary to other techniques
for which the signal strengths are averaged, we take advantage of
the signal strength variations by considering the whole probability
distributions. When applying the RADAR [4] and LOCATOR [6]
methods to our testing data, we find that our method is about 1m
more accurate at the 50% level of the CDF of the positioning error.

This article is organized as follows: in Section 2, the principles
of the method are described. Section 3 gives the main experimental
results and Section 4 proposes a comparison with other techniques.

2. METHODOLOGY

2.1. Estimation of signal strength probability distributions

In both offline and online phases, the signal strength probability dis-
tribution of each detected access point (AP) is estimated from a set
of samples collected at the location of interest. A sample is a set of
instantaneous signal strengths measured in dBm, denoted {si}i∈O

,
where i is the identifier (MAC address) of the AP and O is the set of
detected APs.

One way to proceed is to use histogram estimation. It approxi-
mates the probability of AP i to have signal strength s as the relative
frequency of occurrences of s over the total number of samples L:

Pi(s) =
Ni(s)

L
(1)

where Ni(s) counts the number of samples for which the signal
strength of AP i is s. Pi(s) is a function of discrete values of s in
the interval [smin, smax] (determined by the sensor bounds) and con-
stitutes an estimation of the probability distribution of AP i. It is
important to notice that the minimum step between two discrete val-
ues of s is limited by the resolution of the measuring device. For
instance, the smartphone we used could only measure integer val-
ues.

Figure 1 shows an example of such a distribution. We observe
that the signal strength has strong variations even if the measurement
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Fig. 1. Estimated signal strength probability distribution of one AP
(L = 100)

was taken statically. They can be caused by fading or perturbations
such as persons walking in the building.

2.2. Offline phase

During the offline phase, the signal strength probability distributions˘
P l

i (s)
¯

l∈{1···N}
are estimated at N evenly located positions, with

Loff samples per location. They are stored to constitute the offline
map, which serves as a reference database for the positioning system.

However, it is necessary to be cautious when taking the offline
measurements. Indeed, the user’s body acts as a barrier for the signal
and can therefore perturb the measurements. For each location, it is
preferable to estimate the probability distributions in several orienta-
tions and then combine them together by averaging the probabilities.

2.3. Online phase

The purpose of the online phase is to find the position of the user by
measuring the signal strengths of the detected APs. Similarly to the
offline phase, a set of Lon samples is collected at the user location
and is used to estimate the signal strength probability distributions
Qi(s) of the detected APs. These probability distributions are then
compared to those of the offline map in order to find the most similar
offline locations.

For that purpose, we keep, for each offline location l, the set Oq

l

of the q strongest APs (q ≥ 1) with respect to their average strength
and we calculate for each of them the Bhattacharyya coefficient [7]

Bi,l =
X

s∈[smin,smax]

q
P l

i (s) · Qi(s) (2)

which is a common measure of the overlap between two distribu-
tions. If AP i is part of the set Oq

l but not detectable at the user
location, we assume Bi,l = 0.

Then, the coefficients Bi,l are averaged over the q strongest APs
and we define the average Bhattacharyya distance between the cur-
rent user position and the offline location l as

dl =

(
− ln

“
1
q

P
i∈O

q

l
Bi,l

”
if

P
i∈O

q

l
Bi,l > 0

−∞ otherwise
(3)

Fig. 2. Layout of the floor and positions of the 62 offline locations

The set Ck of the k nearest neighbors is chosen among the offline
locations by taking those with the smallest Bhattacharyya distances.

Finally, the user position is estimated by calculating a weighted
average of the k nearest neighbors positions. And, to give more
weight to the neighbors with the highest similarity, the weighting
values are chosen to be wl = 1/dl. Thus, the user coordinates x̂ =
[x̂, ŷ] are estimated from the neighbors coordinates xl = [xl, yl] as

x̂ = K
X
l∈Ck

wl · xl (4)

where the normalization factor K is

K =
1P

l∈Ck
wl

3. EXPERIMENTAL RESULTS

3.1. Experimental environment

The experiment was performed in the floor located next to our lab
which area has a dimension of 65m by 25m. During the offline
phase (see 2.2), we collected measurements at 62 offline positions
located 3 meters away from each other. The layout of the floor and
the positions of the offline points are shown in figure 2.

The measurements were performed using a specifically-designed
Java API implemented on an Android smartphone. At each offline
location, a set of Loff = 100 samples was collected in order to es-
timate the strength probability distribution of each AP as described
in 2.2. We could detect a maximum of about 15 different APs
depending on the locations1.

To analyze the performances of our system, we used a test set of
online measurements statically taken at different known locations of
the floor. For each online point we collected up to 20 samples. The
effects of the number of online samples is later discussed in 3.2.2.

3.2. Effects of the parameters on performance

3.2.1. Number of strongest APs

In this section, we analyze how changing the number of APs affects
the accuracy. Figure 3 shows the 1st quartile (Q1), the median and
the 3rd quartile (Q3) of the positioning error in meters.

First, we observe that Q1 decreases slowly and reaches a floor
level (about 2.1m) when q increases. In other words, it means that a
small positioning error can hardly be improved by considering more

1In fact, it corresponds physically to 5 or 6 different devices with multiple
MAC addresses
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Fig. 3. Effects of the number of strongest APs on the accuracy:
1st quartile, median and 3rd quartile of the error (k = 3, Lon = 5)

APs. Second, we see that the median and the 3rd quartile of the error
decrease much faster than Q1 does. It means that the risk of mak-
ing a big positioning error is attenuated when we use information
from more APs. Thus, the main advantage of using more APs is to
improve the stability of the positioning. However this improvement
comes at higher computational cost since the number of probability
distribution comparisons scales with the number of APs.

In the remainder of the paper, we use q = 10 as it gives the best
accuracy with Q1 = 1.9m, Q3 = 3.2m and a median error of 2.4m.

3.2.2. Measurement time

In this part, we show the effects of the measurement time – i.e. the
number of online samples – on the accuracy. It is an important pa-
rameter since it determines the refreshing rate of the estimation. It
is therefore a critical factor for the implementation of a real-time
tracking application.

To analyze its influence, we proceed similarly as in the previous
section by looking at the different quartiles of the positioning error.
We see in Figure 4 that only a few samples are sufficient to deter-
mine the user position correctly. Indeed, the accuracy is not much
improved by taking more than 5 samples. With a modern smart-
phone, it corresponds to a measurement time of about 5 seconds,
which is acceptable for real-time positioning.

Nevertheless, taking less than 5 samples does not badly deterio-
rate the accuracy even if the risk of making a larger positioning error
is slightly increased .

3.2.3. Number of nearest neighbors

The number of neighbors also strongly affects the performance of
the system and the value of k must be chosen carefully. Figure 5
points out different tendencies for each quartile of the error. Whereas
the 1st quartile of the error increases almost constantly with k, the
median and the 3rd quartile have a minimum respectively for k = 4
and k = 3.

It means that taking only one neighbor into consideration can
enable to reach a very good accuracy for the locations close to an
offline point but can also lead to a bigger positioning error if it is
not the case or/and if a ’wrong’ closest neighbor is chosen. On the
other hand, considering too many neighbors, even if it limits the
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Fig. 4. Effects of the measurement time on the accuracy: 1st quartile,
median and 3rd quartile of the error (k = 3, q = 10)

E
rr

or
[m

]

Number of nearest neighbors k

Q1

Median
Q3

2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Fig. 5. Effects of the number of nearest neighbors on the accuracy:
1st quartile, median and 3rd quartile of the error (Lon = 5, q = 10)

risk of ’wrong’ neighbor, widens the potential area for the estimated
position and therefore leads to a lower accuracy.

In our experimental conditions, the optimal value would be k =
3. Indeed, as shown in Figure 5, it limits the risk of a large error and
enables to reach a median error of 2.4m.

3.2.4. Application to real-time positioning

Previously, we presented the performances of our system for a static
user. However, it was also tested in a more realistic situation when
the user is moving across the floor and wants his position to be up-
dated frequently. For that purpose, we slightly modified the system
by implementing a sliding window. That is, the position is estimated
from a buffer containing the 5 most recent measured samples. When
a new sample is available, it replaces the oldest one and the user
position is re-estimated from the updated buffer. Thereby, we have
access to a position estimate for each new sample coming up from
the smartphone.

The empirical tests showed very good results using this method

2303



Pr
ob

ab
ili

ty

Distance [m]

Our method
RADAR
LOCATOR

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6. CDF of the positioning error for different positioning systems
(truncated to 7m)

since we were able to track our position very accurately (position-
ing error <3m) when walking across our building. Furthermore, the
positioning accuracy was not affected much in a noisy environment
(walking people nearby, opening and closing doors, etc.).

4. PERFORMANCE COMPARISON WITH OTHER
METHODS

In this section, the performances of our method are compared to
two other popular systems using WiFi fingerprints. The first one,
RADAR [4], uses the Euclidean distance between online and offline
vectors of signal strengths to determine the k nearest neighbors. The
second one, LOCATOR [6], requires as in our method, to estimate
the signal strength probability distribution of each AP during the of-
fline phase. The nearest neighbor is chosen to be the offline point
with the lowest conditional joint probability given the received vec-
tor of signal strengths.

In order to propose a fair comparison between the methods, we
used the same offline map and the same testing data to calculate the
positioning error. Figure 6 shows the CDF (Cumulative Distributive
Function) of the error in function of the distance for each technique.
It is defined as the probability of the positioning error ε to be lower
than a certain distance d:

CDFε(d) = P (ε ≤ d) d ≥ 0 (5)

We observe that our method outperforms the two other ones. Al-
though the minimum error is similar for the three methods, we
see that our maximum error is around 5.5m where LOCATOR and
RADAR can lead to positioning errors above 7m.

In terms of computational complexity, our method is slightly
more demanding. Indeed, computing Bhattacharyya distances be-
tween probability distribution requires more operations than com-
puting a simple Euclidean distance or conditional joint probabilities.

5. CONCLUSION AND FUTURE WORK

The system presented in this paper has proved to be suitable to ac-
curately locate an user in a building. It is based on the existing Wi-
Fi infrastructure and can be implemented on portable devices like

smartphones. We have investigated on the effects of different pa-
rameters on the accuracy. With the optimal number of neighbors
and number of APs and for a measurement time of 5 seconds, our
system has a median error of 2.4m and a maximum error of 5.5m.
These are performances that a user can expect from a localization
service. Besides it outperforms the Wi-Fi fingerprint-based tech-
niques RADAR [4] and LOCATOR [6] and can be used as a real-
time indoor tracking system.. It is therefore adequate for many inter-
active uses and we can easily imagine it to be integrated to existing
navigation systems or in commercial smartphone applications.

In a future work, we want to add a prediction system that would
take into account a model of the user movement. We also consider
dividing the search area into smaller clusters. It would reduce the
computational complexity, especially when the system is used in
large buildings.
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