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ABSTRACT

Cooperative peer-to-peer (P2P) streaming model, which en-

ables cooperation among peers with large intra-group band-

widths, has been shown as a promising approach for video

streaming applications. However, due to the inherent conflict

between the individual peer’s utility and the social optimali-

ty, designing an effective cooperative P2P streaming system

becomes challenging. In this work, we first formulate the in-

teractions among group peers as a cooperative P2P streaming

game, which takes into account the unique characteristics of

video. Then, a cheat-proof strategy is proposed to enforce

rational group peers to achieve the optimal social welfare co-

operatively. In particular, we prove theoretically that the pro-

posed strategy can enforce truth-telling as an equilibrium, sat-

isfy individual rationality and guarantee the budget balance of

the system in an average sense. Finally, simulation results are

shown to verify the effectiveness of the proposed scheme.

Index Terms— P2P, cooperative streaming, mechanism

design, cheat-proof, game theory.

1. INTRODUCTION

Recently, P2P service model has been viewed as a promising

alternative to the traditional client-server service model for

video streaming applications [1]. By enabling peers to act not

only as clients downloading data from the network but also

as servers uploading data for other peers, the P2P model can

greatly reduce the workload placed on the server and therefore

makes the large-scale video streaming possible.

Although P2P video streaming systems can achieve

promising results, several drawbacks of such systems have

been reported, such as introducing a large number of un-

necessary traverse links within a provider’s network [2] and

causing a huge amount of cross Internet Service Provider (IS-

P) traffic [3]. Moreover, these systems are vulnerable to the

well known “free-riding” phenomenon [4]. To address these

drawbacks, the work in [5] proposed a cooperative P2P video

streaming framework, in which geographically neighboring

peers that had large intra-group bandwidths were regarded

as group peers. Then, cooperation among group peers was

achieved through an evolutionary game theoretic approach.

However, the approach in [5] cannot achieve the system-wide

optimal performance due to its underlying evolutionary game

model.

Therefore, it becomes very important to design a coop-

erative P2P streaming system in which rational group peers

cooperate with each other to achieve the system-wide opti-

mal streaming performance. Mechanism design is an effec-

tive tool towards this end, which has been applied to many re-

source allocation problems in communication networks. For

example, in [6], a mechanism design based approach has been

proposed to coordinate users to access the unlicensed band in

an efficient way. The work in [7] proposed a truthful auction

to enable dynamic spectrum access in wireless networks.

However, all these existing approaches cannot be directly

applied to cooperative P2P video streaming, due to the follow-

ing two reasons. First, for content-aware video applications,

the unique characteristics of video must be explicitly consid-

ered. Second, in the cooperative P2P streaming problem, the

gain is determined by the level of cooperation while group

peers share the duty rather than resources in typical resource

allocation problems. In this work, we propose a cheat-proof

game-theoretic framework for the cooperative P2P streaming

problem, which can enforce rational group peers acting coop-

eratively to achieve the system-wide optimal streaming per-

formance. Moreover, our framework explicitly takes into ac-

count the unique characteristics of video.

The rest of the paper is organized as follows. In Section

2, we introduce the system model and the utility function.

Then, we present the problem formulation in Section 3. In

Section 4, the specific design of a cheat-proof strategy and

its properties are discussed. Finally, we show the simulation

results in Section 5 and draw conclusions in Section 6.

2. SYSTEM MODEL AND UTILITY FUNCTION

2.1. System Model

We study a P2P network that consists of several groups of

peers who want to view a real-time video streaming simul-

taneously. Peers within the same group cooperate with each

other to download video data either directly from the server

or from peers in other groups. Then, the downloaded video
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data is shared within the group in a P2P manner.

Consider a group of peers numbered 1, 2, ..., N . If we de-

note the download rates of these peers as R1, R2, ..., RN , re-

spectively, then the total download rate achieved by all peers

can be represented as R=
N∑
i=1

Ri. We assume that the upload

and download bandwidths within the group are larger than

those cross groups. Moreover, peers are assumed to be ratio-

nal in the sense that they will act to maximize their utilities.

2.2. Utility Function

Given the total download rate R and peer i’s download rate

Ri, we can write the utility function of peer i as

Ui(R,Ri) = λgi(R)− ci(Ri),

where gi(R) is the gain, ci(Ri) is the cost and λ is a parameter

that controls the gain to cost ratio. Note that the intra-group

sharing cost is negligible due to the large upload and down-

load bandwidths within the group.

In this work, we assume that the cost is a linear function

of the individual peer’s download rate as follows.

ci(Ri) = CiRi,

where Ci is the cost per unit download rate of peer i.
The gain gi(R) is determined by how much peer i is sat-

isfied with the received video. Therefore, it is desired to in-

corporate the unique characteristics of video when designing

gain functions. In this work, we first design the gain as a func-

tion of the peak signal-to-noise ratio (PSNR) of the video as

gi(R) = ln(PSNR).

Here, ln(·) function is adopted due to the fact that a certain

quality difference in the high PSNR region is less significant

than that in the low PSNR region. Then, by adopting a two-

parameter distortion-rate model of video [8] and applying the

relationship between PSNR and distortion, we have

Ui(R,Ri) = λ ln(γ + βR)− CiRi, (1)

where γ and β are two parameters determined by the video.

3. COOPERATIVE P2P STREAMING GAME

From the utility function, we can see that for any peer, the gain

is determined by the total download rate of the group while

the cost is a linear function of his/her download rate. Since

peers are rational, they tend to contribute less and act selfishly

as “free-riders”, which leads to the failure of the cooperative

P2P streaming system.

In this work, to stimulate cooperation among rational

group peers, we formulate this problem as a cooperative P2P

streaming game. In the proposed game, players are the N
group peers. Each player has his/her own utility function de-

fined in (1) and a maximum download rate constraint Rmax
i .

The video streaming is also assumed to have minimum and

maximum source rate constraints, which are denoted asRmin

and Rmax respectively. Moreover, we assume that the unit

cost of each user is a random variable drawn according to

a probability density function (PDF) fi(Ci). Although the

PDFs are assumed to be public information, realizations of

the unit cost {C̃1, C̃2, ..., C̃N} are held privately to each play-

er respectively. We divide time into time frames. At the

beginning of each time frame, after observing his/her own

private information, the i-th player will report a value Ĉi

to the server, which is not necessarily the same as the true

value C̃i. Once received reports from all players, the server

will decide the download rates of all players for this time

frame, notify every player his/her assigned download rate

and coordinate the video streaming according to such rate

assignment.

Several optimality criteria, such as proportional fairness

and Pareto optimality, can be adopted by the server to deter-

mine the optimal rate assignment. In this work, we choose to

maximize the social welfare, which is the sum utility of all

players. The problem can be mathematically expressed as

max
R1,R2...,RN

N∑
i=1

[
λ ln(γ+β

N∑
i=1

Ri)−ĈiRi

]
, (2)

subject to 0 ≤ Ri ≤ Rmax
i , i = 1, 2, ..., N,

Rmin ≤ R ≤ Rmax.

By solving (2), we can obtain the optimal download rate

assignment rule, which we show in the following proposition.

Proposition 1. Based on the reports of group peers, the serv-
er assigns the download rate for each peer according to the
following rule.

R∗
i = ri

(
Ĉ1, Ĉ2, ..., ĈN

)
=

⎧⎨
⎩

Rmax
i if Ĉi < Cth,

Rth if Ĉi = Cth,

0 if Ĉi > Cth,

(3)

where Cth is a threshold determined by the Karush-Kuhn-
Tucker (KKT) conditions [9] of (2),

Rth =
1

N∑
k=1

1(Ĉk = Cth)

(
Rtotal −

N∑
k=1

1(Ĉk < Cth)R
max
k

)
,

and Rtotal = min
(
Rmax,max

(
Rmin, Nλ

Cth
− γ

β

))
.

Proof : Due to page limitation, we show the proof in the

supplementary information [10]. �
Since the rate assignment rule in (3) is the solution to (2),

the social welfare of the entire group will be maximized if

all peers report their true values, i.e. if Ĉi = C̃i for all i =
1, 2, ..., N . However, as the rate assignment rule in (3) always

favors group peers that have high download costs, peers will

tend to report larger values to the server to avoid the duty of

downloading. Therefore, in order to achieve the system-wide
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ψi(Ĉi) = E

⎧⎨
⎩

N∑
j=1,j �=i

[
λ ln

(
γ + β

N∑
k=1

rk(C1, C2, ..., CN )

)
− Cjrj(C1, C2, ..., CN )

] ∣∣∣Ci = Ĉi

⎫⎬
⎭ . (5)

Ũi(C̃i, Ĉ1, Ĉ2, ..., ĈN ) = λ ln

(
γ + β

N∑
k=1

rk(Ĉ1, Ĉ2, ..., ĈN )

)
− C̃iri(Ĉ1, Ĉ2, ..., ĈN ) (7)

optimal streaming performance, the following question need

to be addressed: how to provide incentives for rational group
peers to report their true values.

4. CHEAT-PROOF STRATEGIES

In this section, we propose a mechanism design based ap-

proach to enforce truth-telling among rational group peers. In

particular, every group peer will receive a transfer at the end

of each time frame, which is measured by some virtual cur-

rency and can be either positive or negative. When the transfer

of a player is positive, he/she gets compensation from the sev-

er. On the other hand, the player will have to pay to the server

if the transfer is negative. After introducing transfer func-

tions, the overall utility function of a player becomes his/her

original utility in (1) plus the transfer.

In the proposed cheat-proof strategy, we define the trans-

fer function of the i-th player as

ti(Ĉ1,Ĉ2,...,ĈN)=
N∑

j=1,j �=i

Uj(R
∗,R∗

j )−
1

N − 1

N∑
j=1,j �=i

ψj(Ĉj), (4)

where R∗ =
N∑
i=1

R∗
i , R∗

i and ψi(Ĉi) are defined in (3) and

(5), respectively. Note that the expectation in (5) is taken over

the download costs of all players except player i.

Theorem 1. With the transfer functions in (4), the proposed
mechanism is cheat-proof, i.e. it is an equilibrium that every
player claims his/her true value.

Proof : It suffices to show that it is the best response of a

player to report his/her true value when other players claim

their true values. Without loss of generality, we assume play-

ers 2 to N report the truth. Then, the necessary and sufficient

condition of truth-telling being equilibrium can be written as

∀Ĉ1 ≥ 0,

Ũ1(C̃1, C̃1, C̃2, ..., C̃N ) + t1(C̃1, C̃2, ..., C̃N ) ≥
Ũ1(C̃1, Ĉ1, C̃2, ..., C̃N ) + t1(Ĉ1, C̃2, ..., C̃N ), (6)

where Ũ1(C̃1, Ĉ1, Ĉ2, ..., ĈN ) is defined (7). Substituting (4)

into (6) and eliminating common terms from both sides, we

have ∀Ĉ1 ≥ 0,

Ũ1(C̃1, C̃1, C̃2, ..., C̃N )+

N∑
i=2

Ũi(C̃i, C̃1, C̃2, ..., C̃N ) ≥

Ũ1(C̃1, Ĉ1, C̃2, ..., C̃N )+

N∑
i=2

Ũi(C̃i, Ĉ1, C̃2, ..., C̃N ). (8)

Both sides of (8) are the sum utility of all players with

player 1 reporting different values. Moreover, since reporting

a false value Ĉ1 only affects the assigned download rates and

{R∗
i = ri(C̃1, C̃2, ..., C̃N )} with i = 1, 2, ..., N maximize

the sum utility of all group peers, (8) holds for all Ĉ1 ≥ 0,

which establishes Theorem 1. �
From Theorem 1, we can see that with the proposed trans-

fer functions, we successfully align each individual player’s

interest with the social objective and therefore enforce truth-

telling as an equilibrium. Moreover, to make sure that players

have incentives to participate in the proposed game, we need

to guarantee that their overall utilities are greater than zero,

which is called “individual rationality (IR)” in mechanism de-

sign theory [11]. Our results are summarized in the following

theorem.

Theorem 2. When λ ≥ max
i=1,2,...N

(
E[Ci]R

max
i

In(γ+βRmin)

)
, the pro-

posed cheat-proof strategy satisfies the individual rationality
condition at the equilibrium, which can be mathematically ex-
pressed as follows.

E
[
Ũi(C1,C2,...,CN )+ti(C1,C2,...,CN )

]
≥0, ∀i=1, 2, ..., N.

Proof : Due to page limitation, we show the proof in the

supplementary information [10]. �
Moreover, the proposed transfer functions can guarantee

budget balance of the system on average, which is shown in

the following theorem.

Theorem 3. With the proposed cheat-proof strategy, the sys-
tem can achieve budget balance as follows.

E

[
N∑
i=1

ti (C1, C2, ..., CN )

]
= 0.

Proof : Due to page limitation, we show the proof in the

supplementary information [10]. �
From Theorem 3, we can see that if the system operates

for a relatively long time, the monetary value will only cir-

culate within the group. Therefore, no extra monetary value

is made from group peers by the server nor the server has to

2299



1 2 3 4 5 6 7 8
−5

0

5

10

15

20

25

30

Cmax

E
xp

ec
te

d 
so

ci
al

 w
el

fa
re

 

 
Proposed
Non−cooperative

Fig. 1. Expected social welfare for the proposed framework

vs. non-cooperative method.

pay group peers, which is a desired property especially for

the P2P streaming scenario. Note that the Vickrey-Clark-

Groves (VCG) mechanism [12] can also be used to enforce

truth-telling. However, the VCG mechanism cannot guaran-

tee budget balance and therefore is less appropriate than the

proposed cheat-proof strategy for the cooperative P2P stream-

ing game.

5. SIMULATION RESULTS

In this section, we conduct numerical simulations to evaluate

the proposed framework. A group of 6 peers is considered and

the maximum rate constraint Rmax
i is set as 3 for all peers.

Moreover, we assume λ = 2, γ = 5, β = 1, Rmin = 1 and

Rmax = 10 in the simulations.

We first show social welfare comparison between the

proposed framework and the non-cooperative P2P streaming

method, in which peers act as individuals and maximize their

own utilities without cooperation. Moreover, the unit cost

of all peers are assumed to be i.i.d. random variables with

uniform distribution on [0, Cmax]. We show the curves of

the expected social welfare versus Cmax for both methods in

Fig. 1. From the figure, we can see that the proposed frame-

work achieves much higher expected social welfare than the

non-cooperative method. This is due to that the proposed

framework enables peers to cooperate with each other in a

way that the optimal social welfare is achieved.

Next, we evaluate the cheat-proof property of the pro-

posed framework. Cmax is set as 2 in this simulation. More-

over, we assume that all players report the truth except one

particular player. Then, we evaluate the expected overall u-

tilities of this particular player versus his/her claimed val-

ues. The simulation results with three different true values

are shown in Fig. 2. We can see that for all the three differ-

ent true values, the player’s expected overall utility is max-

imized when he/she truthfully reports the cost. Therefore,

truth-telling is enforced by the proposed framework.
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Fig. 2. The expected overall utilities versus the differen-

t claimed values.

6. CONCLUSION

In this paper, we propose a cheat-proof game-theoretic frame-

work for cooperative P2P streaming problems, which takes

into account the unique characteristics of video. We prove

theoretically and demonstrate though simulations that with

the proposed framework, group peers get the incentive to

truthfully reveal their private information and therefore can

act cooperatively to achieve the optimal social welfare. More-

over, the proposed scheme guarantees both individual ratio-

nality and budget balance.
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