
A GAME THEORETIC FRAMEWORK FOR OPTIMAL RESOURCE ALLOCATION IN P2P
SCALABLE VIDEO STREAMING

Stefano Asioli, Naeem Ramzan, and Ebroul Izquierdo

School of EECS, Queen Mary University of London, London, UK
{stefano.asioli, naeem.ramzan, ebroul.izquierdo}@eecs.qmul.ac.uk

ABSTRACT

In this paper we describe a game theoretic framework for scalable
video streaming over a peer-to-peer network. The proposed system
integrates optimal resource allocation functionalities with an incen-
tive provision mechanism for data sharing. First of all, we introduce
an algorithm for packet scheduling that allows users to download a
specific sub-set of the original scalable bit-stream, depending on the
current network conditions. Furthermore, we present an algorithm
that aims both at identifying free-riders and minimising transmis-
sion delay. Uncooperative peers are cut out of this system, while
users upload more data to those which have less to share, in order
to fully exploit the resources of all the peers. Experimental evalua-
tion shows that this model can effectively cope with free-riders and
minimise transmission delay for scalable video streaming.

Index Terms— peer-to-peer, scalable video, game theory

1. INTRODUCTION

In the past few years, popularity of multimedia applications over
the Internet has grown exponentially. This is due to the increas-
ing diffusion of broadband connections. Highly demanding services
for video on demand or live streaming are now offered by several
providers and most of them usually rely on a client/server architec-
ture. However, this approach is expensive and it does not exploit the
idle resources of the users of the system. On the other hand, peer-
to-peer (P2P) is a valid alternative to this model. In fact, if peers are
given the proper incentives, they can share their resources, getting a
reward from other users and lowering the burden of the server.

Live video streaming over P2P networks, however, still presents
some challenges. First of all, data chunks have strict deadlines, rep-
resented by their playback time. That is, in real-time applications
like P2P TV broadcasting, the delay between the generation of a
chunk and the receiving time should be minimised. Second, users
have different upload capacities and P2P networks are highly het-
erogeneous. Finally, users in this system can behave as free-riders.
In fact, knowing the vulnerabilities of a P2P protocol, they download
data without returning anything in exchange.

The problem of network heterogeneity can be partially solved
by using scalable video coding (SVC). This allows to adapt the con-
tent to different users requirements by selecting an appropriate sub-
set of the original sequence for download and discarding the rest.
These codecs are based on the DCT transform, like the standard
H.264/SVC [1], or wavelet-based [2]. In both cases, adaptation can
be performed in terms of frame size, frame rate or Signal-to-Noise
Ratio (SNR).

This research was partially supported by the European Commission un-
der contract FP7-248474 SARACEN and FP7-287723 REVERIE.

P2P systems for video streaming can be divided into two cate-
gories: tree-based and mesh-based. A few algorithms for minimum-
delay streaming rely on a tree-based architecture [3]. This approach
has several advantages, including better resource allocation. How-
ever, especially in big networks, these trees are expensive to main-
tain. Furthermore, the most critical aspect is the lack of resource
reciprocation between a child and a parent node. A solution to this
problem is represented by complementary trees [3]. However, this
system needs to create several overlay networks that need to be con-
stantly balanced. On the other hand, there exist solutions based on a
mesh topology. Specifically, [4] is a push-based solution where the
latest useful chunks are forwarded to the most deprived peers. Ex-
perimental evaluation shows that this technique can achieve results
that are comparable to tree-based approaches.

The problem of resource reciprocation in P2P networks has been
an important area of research for many years. Several models, like
the original BitTorrent (BT) [5] focus on short-term effects, which
might not be suitable for video related applications. In fact, peers
might not always have data to share with users they are currently
downloading from. Many alternative approaches are based on game
theory. In [6] a credit-line mechanism is introduced. In this solution,
peers always cooperate with other users, unless the contribution of a
user becomes too big with respect to its reciprocation. This strategy
is cheat-proof, a Nash Equilibrium and strongly Pareto optimal [6].

The main contribution of this paper is a game theoretic frame-
work for scalable P2P video streaming with a focus on optimal re-
source allocation and delay minimisation. To the best of our knowl-
edge, optimising streaming rates and finding incentives for users to
cooperate are usually considered as separate problems. Most real
systems, however, need to deal with both at the same time. Our
technique considers both issues, while aiming at achieving nearly
optimal performance. In addition to this, our approach is designed
for the transmission of scalable video sequences, as compared to
conventional video streaming services. In our proposed architec-
ture, peers are discouraged from downloading videos with a bit-rate
which is higher than their upload capacity. The result is a system in
which misbehaving users are detected and cut out, while the others
are rewarded by achieving real time streaming.

The remaining Sections of this paper are organised as follows:
Section 2 provides some background; Section 3 describes the pro-
posed algorithm; Section 4 presents the results obtained in our sim-
ulation; Finally, Section 5 concludes the paper.

2. BACKGROUND

The problem of finding incentives in P2P networks has been exten-
sively studied in the past few years. More recently, some systems
have been specifically designed for video streaming. A common fac-

2293978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

tor of all these solutions is that each peer is associated with a utility
or payoff function [7]. Let us suppose that a video bit-stream of bit-
rate q is divided into chunks and this video is originally stored in a
server; for simplicity, time is divided into rounds. For the two-player
game, the utility function for a single round is defined as follows [7]:

u1(x1, x2) = x2 γ1 − x1 λ1

u2(x1, x2) = x1 γ2 − x2 λ2 (1)

In (1), xi is the action taken by peer Pi and it is either 1 or 0, depend-
ing on the decision of i to cooperate or defect. γ ∈ [0, 1] denotes the
gain which a certain user obtains from the receiving a video chunk.
On the other hand, λi is the loss associated to cooperation.

P2P video streaming can be considered as an infinitely repeated
game [6]. In this case, an averaged utility function Ui(x) is consid-
ered, where x = (x1,x2) is a vector containing the decisions of the
peers at each round. This function is defined as:

Ui(x) =

∑Tfin

t=1 ui(x1(t),x2(t))

Tfin
(2)

where xi(t) is the action of peer Pi at round t and Tfin can be either
the round corresponding to the end of the playback or the round in
which peers stop cooperating. In [6] this happens when the other
peer refused to cooperate in the previous round or if the other user
cannot share any data that can be useful for the current peer. If both
peers cooperate until the end of the game, the corresponding utility
function will be U(x) = (U1(x), U2(x)) = (γ1 − λ1, γ2 − λ2).

In the multiple user scenario, however, a cooperating peer might
not always be able to reciprocate resources immediately. Therefore,
this one strike and you are out-like strategy might not be optimal. A
credit line mechanism is therefore proposed and a maximum debit
Δmax is introduced. In this case, considering a peer Pi and the set
of its neighbours Pk ∈ Ni, where Ni is the set of neighbour peers
of Pi, the number of chunks Pi uploaded to a generic neighbour Pk

can be written as χs
k(i, t), while the number of chunks received by

the same peer is denoted by χr
k(i, t). In order to identify free-riders

in the system, Pi adopt the following rule:

• if χs
k(i, t)− χr

k(i, t) ≤ Δmax then Pi marks Pk as coopera-
tive.

• if χs
k(i, t)−χr

k(i, t) > Δmax then Pi marks Pk as free-rider.

This implies that the number of chunks two peers exchange
should be asymptotically equal. It is possible to prove [6] that in
case of no attacks this strategy is sub-game perfect, cheat-proof and,
if none of the peers stops receiving chunks, strongly Pareto optimal.

3. PROPOSED MODEL

The proposed system consists of several parts. First of all, the archi-
tecture can be classified as pull-based; the video source uploads the
content to selected peers, which subsequently receive requests from
their neighbours. Our proposed algorithms concern packet schedul-
ing and resource allocation. Content adaptation is performed by
using a wavelet-based layered scalable video codec [2], while our
scheduling technique is based on a sliding window [8]. This allows
the users to give different priorities to different sub-sets of the bit-
stream, in order to maximise the received video bit-rate with respect
to the available resources. Moreover, as far as upload bandwidth
allocation is concerned, minimum-delay streaming is achieved up-
loading data to the most deprived peers [4]. In fact, uploading data
to peers that have less to share increases the chances of them having

Fig. 1. Sliding window for scalable live video streaming, showing
high and low priority requests.

something to upload in the future [4]. Finally, free-riders are cut out
using a credit line mechanism [6]. In our system, however, peers are
allowed to send low or high priority requests in order to fully utilise
the capacity of the network.

3.1. Packet Scheduling Algorithm

The proposed solution has been designed for the Wavelet-based
Scalable Video Codec (WSVC) developed at our institution [2].
However, a similar solution can be implemented for the standard
H.264/SVC [1] codec. The video bit-stream is divided into Groups
Of Pictures (GOPs) and quality layers, as shown in Figure 1. More-
over, the video file is divided into chunks, as for the standard BT.

This packet scheduling algorithm is similar to our solution pre-
sented in [8] and its objective is to maximise the received video bit-
rate. A sliding window that consists of a fixed number of GOPs is
defined. It contains the GOPs that follow the current playback posi-
tion. The number of GOPs inside the window usually corresponds
to 10-20 seconds of video. Inside the window chunks have a priority
that depends on the quality layer they belong to. Layer q0, which is
also called the base layer needs to be completely received to decode
a certain GOP. Therefore, it has the highest priority. All the other
layers are enhancement layers and they can improve the received
video quality. Inside each layer, rarest pieces are requested first. In
contrast with our previous implementation [8], this also holds for the
base layer. At regular intervals, the system performs a window shift
and checks how many quality layers of the current GOP have been
completely received. If at least the base layer has been received, it
will be decoded, otherwise the GOP will be skipped.

The sliding window is also shown in Figure 1. In a) the peer
has just joined the network. It calculates the current playback posi-
tion from its neighbours and there is a short pre-buffering before the
first window shift. Figure 1b) shows the final moments of the pre-
buffering. The peer has already downloaded all the chunks it could
afford to upload and it sends low-priority requests to its neighbours.
After the window shifts in c), the completely received quality layers
are decoded, while the partial ones are discarded.

3.2. Game Theoretic Framework

In our system, a credit line mechanism is used. However, as it was
previously introduced, two different types of requests are defined:
regular and low priority ones. This is necessary, as we prove that

2294

peers should not request data they cannot afford to upload, but we
would also like to exploit the spare resources in the system. We
consider the case in which peers have different upload capacities
and we use WSVC. Under these circumstances, quality layers are
subsets of the original bit-stream associated to different SNR.

Theorem 1: Let us consider a peer Pi whose upload capac-
ity is ci and a layered scalable video whose bit-rates of layers
q0, . . . , qmax are b0, . . . , bmax. If this peer downloads data belong-
ing to quality layers qj , . . . , qmax, such that bj > ci, it will be
eventually marked as free-rider by its neighbours.

Proof: A peer Pi is marked as free-rider by its neighbours Pk ∈
Ni if χs

k(i, t) − χr
k(i, t) > Δmax

k for any k | Pk ∈ Ni, where
Ni is again the set of neighbours of Pi, χ

s
k(i, t) is the number of

chunks Pk sent to Pi at time t, χr
k(i, t) is the number of chunks

Pk received from Pi at time t and Δmax
k is the credit line set by

peer Pk. Considering the most favourable case for peer Pi, which
is when χr

k(i, t) = χs
i (k, t) (e.g. there are no transmission errors),

Pk will cooperate with Pi if limt→∞(χs
i (k, t)/χ

s
k(i, t)) = 1. If

this condition is not satisfied then, for an arbitrarily long time t′,
χs
k(i, t

′) − χs
i (k, t

′) > Δmax
k will be verified. As χs depends on

the upload capacity of a certain peer, then a user should not try to
download more data then it can afford to upload. Therefore, for the
specific case of scalable video transmission, a peer should not aim at
downloading the video with a bit-rate that is higher than its upload
capacity. It also follows that free-riders and users with an upload
capacity which is lower than bit-rate of layer q0 will be cut off.

In some cases, however, there might be some spare resources in
the system. Therefore, in order to fully exploit the available capacity,
low priority requests are defined. These are requests that concern
quality layers with a higher bit-rate than a peer can afford to upload.
They will only be satisfied if the peer that receives one is not fully
utilising its capacity and they will not be added to the current credit.
Furthermore, is not convenient for a peer to ask all the chunks as low
priority requests. For instance, no chunks belonging to the base layer
can ever be requested under these circumstances, as it would imply
that a peer does not meet the minimum requirements to be allowed
inside the P2P network. Moreover, as far as enhancement layers are
concerned, requests will only be satisfied if there are no high-priority
ones in the buffer.

3.3. Delay Minimisation

The delay minimisation algorithm aims at achieving real-time video
streaming through accurate resource allocation. In applications such
as live streaming, it is fundamental to keep the upload channels of
all the peers constantly busy. It has already been proven [9] that in
order for the peers to be fully served, for a non-scalable video the
following condition needs to be satisfied:

∑

i | Pi∈N

Ui ≥ (|N | − 1)× s (3)

where N is the set of peers (including the source), Ui is the upload
capacity of a peer Pi, |N | is the total number of peers and s is the
video bit-rate. It is possible to rewrite the condition stated in Equa-
tion (3) for scalable video sequences.

Lemma 1: Assuming that a scalable video with bit-rates b1, . . . ,
bj , . . . , bmax is used, and each peer Pi has a target bit-rate bij , in or-
der to achieve these received bit-rates the following condition needs
to hold: ∑

i | Pi∈N

Ui ≥
∑

i | Pi∈N\{S}
bij (4)

where S is the source of the video. Considering the total flow of
data entering and leaving each peer, the Lemma follows. We now
assume that the number of peers in the network is high and the con-
tribution of the source is therefore negligible. Moreover, in order for
a peer not to be marked as free-rider, following from the proof of
Theorem 1 the outgoing flow of data on every single channel should
roughly correspond to the incoming one. In this specific case, the
former condition can be rewritten as Ui ≥ bij , ∀i|Pi ∈ N\{S}
and Ui = bij only in case of optimal resource allocation. In some
cases, however, this does not happen as some peers do not have any
data their neighbours are interested in. This problem can be partially
overcome uploading more data to the most deprived peers [4].

3.4. Optimal policy for delay minimisation and free-riding de-
tection

As far as our resource allocation algorithm is concerned, a peer Pk

adopts the following strategy when receiving a request ri from Pi:
every time a request is received, it is associated with a time-stamp
and a time-to-live (TTL). Moreover, it is associated with a score
s(ri), which is defined as follows:

• If χs
k(i, t) − χr

k(i, t) > Δmax
k , s(ri) = −∞; this request

will be immediately rejected, as Pi might be a free-rider.

• If χs
k(i, t) − χr

k(i, t) ≤ Δmax
k and the request has been

sent with high priority, the request will be inserted into
a buffer and it will be associated with a score s(ri) =(
α · ϕi

dep + β · ϕi
cr

)
, where ϕi

dep is the deprivation factor
and ϕi

cr is the credit factor of Pi, and α and β are arbitrary
constants which satisfy α + β = 1. These quantities will be
explained in detail in the following paragraphs.

• If χs
k(i, t) − χr

k(i, t) ≤ Δmax
k and the request has been sent

with low priority, the request will be inserted into the buffer
with s(ri) = 0.

Time is divided into rounds; at the end of each round, a peer accepts
the request in its buffer which has the highest score, while the others
remain until their TTL expires. The TTL depends on the arrival
rate of the requests from its non free-riding neighbours. Its value is
calculated to minimise the number of rounds with no requests in the
buffer. If two or more requests have the highest score, the peer will
upload the least forwarded chunk.

As far as the deprivation factor is concerned, it is calculated as
follows. Considering all the non free-riding neighbours N∗

k of Pk,
for every peer Pj in this set the number of chunks Pk could con-
tribute to them are counted. This value is also called the deprivation
of peer Pj , or δ(Pj). The deprivation factor ϕi

dep of a peer is there-
fore computed as:

ϕi
dep =

δ(Pi)∑
j∈N∗

k
δ(Pj)

(5)

In other words, ϕi
dep is the ratio between the number of chunks Pk

has and Pi is missing and the total number of chunks the non-free-
riding neighbours of Pk are missing. On the other hand, the credit
factor ϕi

cr ranges in (0, 1] and it indicates the contribution received
by Pk from Pi with respect to the total contributions from the non
free-riding neighbours of Pk. It is defined as:

ϕi
cr =

χr
k(i, t)− χs

k(i, t) + Δmax
k + 1∑

j∈N∗
k
χr
k(j, t)− χs

k(j, t) + Δmax
k + 1

(6)

The deprivation factor helps achieve nearly optimal perfor-
mance, while the credit factor is used to encourage resource recip-
rocation.

2295

3.5. Distribution of the First Copy

One of the critical aspects in P2P file sharing is the distribution of
the first copy. In our approach, peers cannot request any data to the
source, which only uploads data to selected users in the swarm. First
of all, the source identifies the most deprived non-free-riding peer in
the swarm. This can be achieved using a give-to-get (G2G) [10] like
algorithm; depending on the information received from the peers in
the swarm, the source will then classify users either as cooperative
or deceptive. The second step consists of identifying the chunks this
peer is missing. Among them, the source will then forward the one
that has been forwarded the least amount of times.

4. RESULTS

We tested our algorithms using ns-2 simulator [11]. City sequence is
repeated 15 times (for a total of 150 seconds) and encoded in WSVC
format. The spatial resolution is 352×288 (CIF) and the frame rate is
30 fps. The video sequence is split into chunks of 4 KB. In addition,
there are 7 quality layers, ranging from 256 kbps to 768 kbps. In our
experiments, only one source has the sequence. Peers are divided
into two categories: regular users and free-riders. Regular users fol-
low the proposed algorithm, while free-riders reject any request they
receive. The peers join the system within a one-second interval. Af-
ter the pre-buffering, the playback starts. The size of the network is
31 or 51 peers. This includes a video source, which has the same
bandwidth as the other users (75 KBytes/s). We consider scenarios
with different fractions of free-riders (50% and 66%) and values of
Δmax. Moreover, α and β range between 0 and 1, with β = 1− α.
A comparison with an existing technique [6] is also shown. In the
next paragraphs, some selected results will be illustrated.

Figure 2 shows the impact of different Δmax on the behaviour
of the system when there are 31 peers with 66% free-riders in the
network and (α, β) is set to (0.5, 0.5). Δmax grows exponentially
with base 2 and it ranges between 1 and 128 chunks. Tests are also
performed with Δmax = ∞. The average received video bit-rate
grows as Δmax grows up to a certain threshold, which in this case is
4 chunks. For values below the threshold, cooperative peers are in-
correctly detected as free-riders, which causes poorer performances
of the system. On the other hand, using a Δmax > 4 chunks causes a
degradation in the received video bit-rate of cooperative users, while
free-riders gain a benefit as the credit line grows. However, due to
the G2G-like free-riding detection mechanism used by the source
and the large amount of misbehaving peers in the network, their av-
erage received video bit-rate remains very low.

We are also considering the impact of α and β on the behaviour
of the system. Δmax is set to 4 chunks and there are 51 peers in the
network, 50% of which are free-riders. Figure 3 shows the results
for cooperative peers when (α, β) varies between (0, 1) and (1, 0).
An important remark is that for (α, β) = (0, 1) the system is very
similar to the one presented in [6]. This graph indicates that when
free-riders are in the swarm, considering both the credit and the de-
privation factor gives better results than trying to solve the problem
of resource reciprocation and delay minimisation alone.

5. CONCLUSION

We proposed a framework for P2P scalable video transmission that
exploits elements from game theory and delay minimisation algo-
rithms. Our simulation studies show that allocating resources con-
sidering the credit and the deprivation factors of a peer’s neighbours

Fig. 2. Received video bit-rate with 31 peers and 66% free-riders.

Fig. 3. Received video bit-rate for cooperative peers as a function of
α and β with 51 peers and 50% free-riders.

gives better results than if only either of them is considered. More-
over, our experimental evaluation indicates that giving equal impor-
tance to both factors guarantees the best performance. Free-riders
are cut out of the system, while cooperative users can achieve real
time streaming.

As far as future work is concerned, we will consider different
approaches, based on P2P network clustering. Furthermore, we will
analyse the importance of social based features in such systems.

6. REFERENCES
[1] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding

extension of the H.264/AVC standard,” IEEE Trans. Circ. and Sys., Sep. 2007.
[2] N. Ramzan, T. Zgaljic, and E. Izquierdo, “An efficient optimisation scheme for

scalable surveillance centric video communications,” Signal Processing: Image
Communication, Jul. 2009.

[3] P. Baccichet, T. Schierl, T. Wiegand, and B. Girod, “Low-delay peer-to-peer
streaming using scalable video coding,” in Proc. Packet Video 2007, 2007.

[4] F. Picconi and L. Massoulie, “Is there a future for mesh-based live video stream-
ing?” in Proc. 8th Int. Conf. P2P Computing, 2008.

[5] B. Cohen, “Incentives build robustness in BitTorrent,” in Proc. 3rd Int. Conf.
P2P Computing, Apr. 2003.

[6] W. S. Lin, H. V. Zhao, and K. J. R. Liu, “Incentive cooperation strategies for P2P
live multimedia streaming social networks,” IEEE Trans. Mult., Apr. 2009.

[7] C. Buragohain, D. Agrawal, and S. Suri, “A game theoretic framework for incen-
tives in P2P systems,” in Proc. 3rd Int. Conf. P2P Computing, 2003.

[8] S. Asioli, N. Ramzan, and E. Izquierdo, “A novel technique for efficient P2P
scalable video transmission,” in 2010 European Sig. Proc. Conf., Aug. 2010.

[9] F. Huang, B. Ravindran, and A. Vullikanti, “An approximation algorithm for
minimum-delay P2P streaming,” in Proc. Int. Conf. P2P Computing, Sep. 2009.

[10] J. J. D. Mol, J. A. Pouwelse, M. Meulpolder, D. H. J. Epema, and H. J. Sips,
“Give-to-get: free-riding resilient video-on-demand in P2P systems,” in Proc.
SPIE, Multimedia Computing and Networking Conference (MMCN), 2008.

[11] “Network simulator 2,” http://nsnam.isi.edu/nsnam/index.php.

2296

