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ABSTRACT

Irrecoverable data loss may be unavoidable for real-time video com-
munication over common best-effort networks. Rather than always
display impaired pictures or always “freeze” the last good picture, it
is preferable to transmit additional hints to support selective freez-
ing of heavily damaged pictures only. In particular, errors in im-
paired pictures tend to be localized, and often manifest themselves
as small spatial shifts that are visually preferable to freezes. There-
fore, it is essential that the hints can identify localized error and do
not penalize small shifts. We show two ways such “shift-invariant”
hints for detecting concealment error can be constructed to less than
1% of video rate. Experiments using 720p sequences achieve recall
and precision of 90% and 75%, respectively, with respect to a shift-
invariant PSNR measure. We also present an adaptive decision rule
to obtain shorter and less frequent freezes.

Index Terms— video streaming, video quality monitoring

1. INTRODUCTION

Picture freezes and breakups are two notorious yet distinct artifacts
of streaming video. After best-effort loss recovery and concealment
have been performed, an important task for a receiver is to decide
whether an impaired picture should be displayed. Many impaired
pictures are preferable to freezes, yet some may be highly objection-
able. It is therefore important to have methods to distinguish the
acceptable pictures from the objectionable ones.

Determining visual quality without other hints is challenging. In
contrast, there are existing reduced-reference methods that use low-
rate hints instead of source pictures to determine received video qual-
ity. In particular, [1] proposed a low-rate method based on spread-
spectrum ideas that can accurately approximate the PSNR for video
degraded with both compression and losses. Parts of the techniques
in [1] are adopted into ITU J.240 standard [2] for video quality mon-
itoring. Nevertheless, it is well known that PSNR does not accu-
rately capture visual quality. In particular, even well error-concealed
pictures that are otherwise visually pleasing may contain slight per-
turbations that yield low PSNR, especially when contrast is large.
Therefore, it is essential to develop low-rate hints that are invariant
or insensitive to small perturbations or shifts to properly guide pic-
ture freezing decisions.

Shift-invariant metrics have been studied [3]. In particular, the
SSIM scheme admits both an shift-invariant extension [3] and a
reduced-reference implementation [4]. Nevertheless, as we will
discuss later, this scheme is designed for spread errors and fails to
recognize localized errors common in error-concealed pictures.

In this paper, we develop and compare two shift-invariant hints
that work well for localized errors, and characterize their perfor-
mance against PSNR. The rest of the paper is organized as follows.

Section 2 provides a summary of our design. We first introduce a
suitable target metric that is shift-invariant, and present two reduced-
reference methods for its estimation. We then describe how picture
freeze decisions can be adapted over time. This is followed by ex-
perimental results in Section 3, followed by a conclusion.

2. SHIFT-INVARIANT QUALITY ESTIMATION

Fig. 1 shows two error-concealed pictures when compressed H.264
video is subjected to loss. It is visually obvious that the top picture
suffers from significant breakup and probably should not be shown.
In contrast, the bottom picture only suffers minor visual distortion,
and should be preferentially displayed. One possible way to estab-
lish preference for the bottom picture is to employ a shift-invariant
metric. This is because an acceptable concealed picture typically dif-
fers from its loss-free counter-part via minor perturbations that can
be approximated by small shifts. We next define a shift-invariant
metric to serve as target for evaluating the effectiveness of our sub-
sequent reduced-reference hints.

Fig. 1. Two loss-impaired pictures. The top picture, with PSNR of
28.07 dB compared to loss-free transmitted picture, is more objec-
tionable than the bottom picture with a lower PSNR of 25.40 dB.
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2.1. A Target Shift-Invariant Metric

There are many possible ways to compute distortion between a re-
ceived picture R and sent picture S that exhibit some degree of shift-
invariance. We adopt a direct approach in this paper. Instead of com-
puting PSNR between R and S, our chosen target metric achieves
shift-invariance by performing motion compensation (MC) over a
small range, then compute the PSNR between R and MC(S). We
call this the motion-compensated PSNR (MC-PSNR). In Fig. 1,
MC-PSNR succeeds in capturing human visual preference where
PSNR fails, with a MC-PSNR of 30.17 dB and 34.67 dB for the top
and bottom pictures, respectively. In the results section, MC-PSNR
is computed using 16× 16 blocks with a search range of 4 or about
0.5% picture height for employed 720p content.

We choose this metric over the shift-invariant extension of
SSIM [3] due to the latter’s inability to handle localized errors. For
example, with a sizable impaired region that is 10% picture width
and height, 99% of the image would have no distortion, giving a
score over 0.99 out of 1, regardless of how distorted that region
is. In contrast, squared-error based measures such as MC-PSNR
can better represent large errors with small spatial support. Never-
theless, the purpose of the target metric is for benchmarking only.
Other choices may be equally appropriate.

2.2. System Overview

Given a sent picture S and a received picture R, our goal is to design

a hint h(S) whose compressed version ĥ(S) can be used in place
of S at the receiver for estimating a shift-invariant distortion D. A
picture is displayed if the computed distortion D is smaller than a
threshold T :

D(ĥ(S), R) < T.

In practice, it is common to compute h(R), and determine D simply

as the mean square error between ĥ(S) and h(R). Thus, we have:

display if: MSE(ĥ(S), h(R)) < T (1)

which is the approach we adopt in this paper. The procedures are
outlined in Fig. 2. We next describe two variants of h that can be
used with (1) to achieve shift-invariance.

2.3. Shift-invariant Hints via Picture Resize

A well-established but shift-sensitive quality metric is PSNR. One
way to reduce such sensitivity is through picture downscaling.
Specifically, instead of PSNR between S and R, we seek to deter-
mine the PSNR between their respective downscaled versions s and
r. While a receiver can compute r, sending s as hint represents an
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Fig. 2. A compressed hint ĥ(S) is designed to allow distortion com-
putation in a shift-invariant manner.

impractical overhead. Instead, we employ the technique of [1] as
follows to achieve low-rate computation of PSNR between r and s.

hresize = J240+(s) (2)

where J240+(x) is a vector obtained by first performing a pixel-
wise multiplication of image x with a pseudo-random sequence of
±1, followed by a Walsh-Hadamard transform (WHT), then pixel-
wise multiplication with a second pseudo-random sequence of ±1,
followed by an inverse WHT, and then sampling. This method in [1]
is denoted by J240+ since it is an extension of the methods in ITU
J.240 to handle localized errors due to losses.

For 720p pictures in the results section, s and r are downscaled
by 8 in both dimensions from S and R, respectively, and the hint
employs 80 coefficients. We refer to this scheme as ResizePSNR. For
comparison purposes, we also employ the similar scheme FullPSNR
but without resizing, i.e., h(S) = J240+(S).

2.4. Shift-invariant Hints via Frequency Dropping

Another method to realize shift invariance is to explicitly discard
high frequency components of the signals as follows:

hDCT = Select(DCT(S)) (3)

where DCT is the 2-D discrete cosine transform, and Select retains
a small set of low-frequency coefficients. In the results section, 80
low frequency DCT coefficients are used as hint, and this scheme is
denoted by SelectDCT . Both ResizePSNR and SelectDCT perform
low-pass filtering. The key difference is that ResizePSNR capture
more high frequencies but with less precision due to sampling.

2.5. Temporal Adjustment of Threshold

So far, we have discussed how distortions can be computed for
each frame independently. Nevertheless, we know that freezing
20 consecutive pictures is disruptive to viewing while freezing the
same number of pictures every other frame yields acceptable quality.
Clearly, we should adapt the threshold in (1) based on past frame
freezing decisions.

It has been shown in [5] that viewer mean opinion score (MOS)
can be accurately modeled by the number of freeze episodes and
their durations in the last 10 seconds. Following their findings, we
simplify their proposed model to avoid per-sequence training for fit-
ting MOS. For a picture freeze of duration τ , we compute the degra-
dation e(τ) as:

e(τ) =
53.03

1 +
(
562
τ

)1.01 (4)

We propose to change the threshold T for each video frame based
on the total quality degradation as follows:

T = c1 + c2

√∑
i

e2(τi) (5)

where the summation is over all freeze episodes, each with duration
τi, in the last 10 seconds, and c1 and c2 are positive constants where
c1 represents the threshold used to judge each frame independently
and c2 controls how much we increase the threshold to freeze fewer
frames in case of burst errors. In the results section, c1 and c2 are
empirically chosen to be 10 and 1, respectively.
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3. EXPERIMENTAL RESULTS

We next present results for two 30 fps, 720p sequences, Shields and
Conference, with distinctly different characteristics. Shields exhibits
slow and predominantly panning motion, yielding concealment ar-
tifacts that fit our shift-invariant assumption. In contrast, Confer-
ence, as shown in Fig. 1, contains stationary background and hu-
man subjects with complex motion. This yields many concealment
artifacts that differ from small shifts. Conference is cropped from
1080p source from the Federal University of Rio de Janeiro. Both
sequences contain 300 frames, and are repeated in a loop for 50
times to obtain results in this section.

Fig. 3-(a) shows a segment of the PSNR trace when Shields,
encoded using H.264, is subjected to simulated packet loss ratio of
0.5% with average burst length of 3, and a round-trip time (RTT) of
200 ms. Losses are generally corrected within one RTT using refer-
ence picture selection. All loss impaired pictures are marked in cyan,
with the pictures A and B having the highest and lowest PSNR, re-
spectively. This means freezing decisions made using PSNR would
likely display A but not B. The freezing decisions achieved using
our shift-invariant target measure of Section 2.1 are marked in red,
where B is displayed but not A, indicating that extreme preference
reversal is possible. In other words, using PSNR to guide freezing
decisions is likely to unnecessarily omit good pictures while inad-
vertently display pictures with breakup.
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Fig. 3. PSNR trace for Shields showing extreme preference reversal
between pictures A and B by PSNR and our target shift-invariant
metric MC-PSNR.

We next characterize the decision quality of the proposed shift-
invariant hints ResizePSNR and SelectDCT with respect to our target
shift-invariant metric MC-PSNR that has access to the sent picture.
Using simulation with the same loss and delay as before, we first
examine all loss-impaired pictures to find the set of bad pictures
that should not be shown according to our target MC-PSNR met-
ric. There is no optimal bad set since it depends on various factors
such as viewer preference and viewing distance. Instead, for the sake
of comparison, we choose the worst 10% as the bad set. The bad set
of MC-PSNR is generally different from the bad set of other metrics.
We then examine the precision and recall achieved by different hints
as freeze decision threshold in (1) is varied. Precision of a hint is
the percentage of pictures in its bad set that is also in the bad set of
MC-PSNR, and recall is the detection percentage of the bad set of
MC-PSNR. The temporal threshold adjustment of Section 2.5 is not
applied, since we are only interested in how well the different hints
approximate our target MC-PSNR metric.

The results for Shields are shown in Fig. 4-(a). We see that
ResizePSNR performs marginally better than SelectDCT , with both
shift-invariant hints significantly outperforming FullPSNR, which
estimates full frame PSNR. Since imperfections in the loss-impaired
pictures of Shields are dominated by small shifts, this shows that
both shift-invariant hints are effective in approximating MC-PSNR
while PSNR based metric fails. Specifically, at 90% recall, i.e., when
we are willing to accept 10% undetection rate of bad pictures, FullP-
SNR has precision of 36%, meaning for every bad frame detected,
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Fig. 4. Precision and recall for the frame freezing decisions gener-
ated by various hints with respect to our target metric MC-PSNR.

1.77 good frames is inadvertently mis-classified. In contrast, the
corresponding mis-classification rate for ResizePSNR is 0.32 frame,
a reduction of 82%.

For Conference, we can see that ResizePSNR again outperforms
SelectDCT , indicating that the latter is too aggressive in discount-
ing higher frequencies. More interestingly, unlike in Shields, FullP-
SNR which estimates full frame PSNR outperforms both ResizeP-
SNR and SelectDCT at higher recalls above 85%. This is explained
by the complex motions in Conference, which yields imperfections
that are picture breakups rather than shifts in the worst impaired pic-
tures. For those worst pictures, motion compensation is unlikely to
help and MC-PSNR is essentially simple PSNR. In contrast, by de-
emphasizing higher frequencies, both ResizePSNR and SelectDCT
introduce more deviation from MC-PSNR.

Our shift-invariant hints yield good agreement with MC-PSNR
for translation motions, but PSNR yields better agreement under
complex motions. It is natural to seek hybrid hints that combine
shift-invariance and full frame PSNR. There are many possible
hybrids, and one simple choice is given by CombinePSNR, which
spends half its hint bit-budget on a ResizePSNR hint, and the other
half on a FullPSNR hint. The resulting estimated MSE for Com-
binePSNR is simply taken as the geometric mean of the two noisier
MSE according to ResizePSNR and FullPSNR. The results are shown
in green in Fig. 4. For Shields, its performance remains close to Re-
sizePSNR, but generally lies between ResizePSNR and FullPSNR.
For Conference however, CombinePSNR significantly outperforms
both ResizePSNR and FullPSNR. This suggests that a shift-invariant
component in the hint can significantly improve agreement with
target MC-PSNR even for content without significant panning.

It is perhaps surprising that the hybrid scheme CombinePSNR
outperforms both its constituents ResizePSNR and FullPSNR for
Conference. This phenomenon is best explained using Fig. 6, where
the PSNR between the sent and loss-impaired received pictures are
shown sorted in descending MC-PSNR for various hints. A hint
in perfect agreement with MC-PSNR would rank the loss-impaired
pictures in the exact same order, yielding a monotonically decreas-
ing curve. We already explained why FullPSNR is in agreement
with MC-PSNR for the worst pictures in Conference. This is shown
by the near monotonic behavior for the FullPSNR curve in Fig. 6
beyond rank 1400. Nevertheless, the significant variation between
the ranks of 600 and 1400 causes general inability to distinguish the
good from the bad. Variations in the same range are also present
for the ResizePSNR curve but at a much lower degree. More impor-
tantly, the variations in ResizePSNR and FullPSNR are likely to be
independent. Since MSE of CombinePSNR is formed by the geomet-
ric mean of its constituents’ MSE, its PNSR is their average PSNR,
which will show smaller variation. As a result, the CombinePSNR
curve is more monotonic than either ResizePSNR or FullPSNR. The
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Fig. 5. PSNR between the sent and loss-impaired received
pictures according to various hints sorted in descending
MC-PSNR for Shields.
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Fig. 6. PSNR between the sent and loss-impaired received
pictures according to various hints sorted in descending
MC-PSNR for Conference.

corresponding results for Shields are shown in Fig. 5.

Fig. 7 presents the results of the adaptive temporal adjustment
of threshold T for frequent errors. Fig. 7-(a) shows a PSNR trace for
Conference with loss impaired pictures marked in bold. The tem-
poral evolution in T is shown in Fig. 7-(b) where we see that raises
in threshold last at least 10 seconds. The frame freezing decisions
of ResizePSNR using constant threshold (by setting c2 = 0 in (5))
and adaptive threshold are shown in Fig. 7-(c). We see that the use
of adaptive threshold successfully suppresses close cluster of freeze
episodes and reduces the duration of some freeze episodes.
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Fig. 7. Adaptive temporal adjustment of T . (a) PSNR trace, (b)
adaptive threshold values and (c) frame freezing decisions with con-
stant and adaptive thresholds (high: freeze, low: display)

Finally, we discuss how negligible bit-rate overhead of 1% is
achieved for sending the hints. We encode the video sequences at
2 Mbps, 1% of which is 667 bits per frame. With 80 coefficients per
frame, it suffices to quantize each coefficient to 8 bits without fur-
ther entropy coding. In this paper, we use only 7 bits per coefficient
to leave room for headers for J240+ based hints. For SelectDCT ,
different number of bits are used for different frequency components
according to their dynamic ranges. The overhead can be further de-
creased by entropy coding, e.g., by using distributed source coding

ideas as in [6] to exploit correlation between h(R) and ĥ(S).

4. CONCLUSIONS

For the purpose of determining frame freeze decisions, we show
that shift-invariant metric such as MC-PSNR can be approximated
in a reduced reference framework by resizing the picture or dropping
DCT coefficients. For a panning sequence, these methods produce
superior precision and recall compared to PSNR based methods. For
a sequence without significant panning, we show that these schemes
can be combined with PSNR measures to improve precision and re-
call with respect to MC-PSNR. We also propose an adaptive thresh-
olding technique to account for a viewer’s increased dissatisfaction
when freeze episodes are clustered.

By allowing selective freezing of visually unpleasant pictures
only, our technique significantly improves the visual quality of the
resulting video at a lower than 1% increase in bit-rate.
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