
INCENTIVE ANALYSIS FOR COOPERATIVE DISTRIBUTION OF INTERACTIVE
MULTIVIEW VIDEO

Bo Hu ∗, Gene Cheung # and H. Vicky Zhao ∗

∗ University of Alberta, # National Institute of Informatics

ABSTRACT
In interactive multiview video streaming (IMVS), users can periodi-
cally select one out of many captured views available for observation
as video is played back in time. In single-view video streaming, to
reduce server’s upload burden, cooperative strategies where peers
share received packets of the same video have proven to be effec-
tive, and incentive mechanisms are designed to stimulate user co-
operation. Exploiting user cooperation in high dimensional IMVS,
however, is more challenging. First, small number of peers in a lo-
cal area are likely watching different views among large number of
views available, making it difficult for a peer to find partners of the
exact same view to cooperate. Second, even if a peer can identify
cooperative partners of the same view, they will soon be watching
different views after independent view-switching. In this paper, we
study the use of a multiview video frame structure for IMVS that
facilitates cooperative view switching, where even if peers are ob-
serving different views, they can nonetheless help each other. To
stimulate user cooperation, we model peers’ interaction as an indi-
rect reciprocity game. Using Markov decision process (MDP) as a
formalism, each peer makes distributed decisions to maximize his
aggregate utilities within his lifetime. Simulation results show that
when the cost to help others is much smaller than the utility gained
from others’ help, users fully cooperate. As the cost-to-gain ratio
increases, users tend to behave differently at different views: given
peers can predict their future view navigation paths probabilistically,
a peer likely to enter a view-switching path not requiring others’ help
will have less incentive to cooperate. When the cost-to-gain ratio is
very large, no users will cooperate.

Index Terms— interactive multiview video, cooperative stream-
ing, incentive mechanisms

1. INTRODUCTION
Multiview video refers to the simultaneous capturing of multiple
videos of the same scene of interest by a large array of closely spaced
cameras from different viewpoints. In new interactive multiview
view streaming (IMVS) services [1], a client can periodically se-
lect one out of many captured views available for observation as the
video is played back in time. In response, server sends only pre-
encoded data for the single requested view (rather than all the cap-
tured views) to lower streaming rate.

In single-view video streaming, to ease server’s burden to up-
load the same video to many users, user cooperation [2] has been
exploited where peers share received packets of the same video, so
that a single server can serve a large number of clients. Incentive
mechanisms [3] are designed to stimulate the appropriate amount of
cooperation among selfish peers. However, exploiting user cooper-
ation in high dimensional IMVS is more challenging. First, small
number of peers in a local area are likely watching different views
among large number of views available, making it difficult for a peer
to find partners of the exact same view to cooperate. Second, even if

a peer can identify cooperative partners of the same view, they will
soon be watching different views after independent view-switching.

In the literature, [1] designed frame structures using distributed
source coding (DSC) [4] for IMVS to achieve bandwidth-efficient
view switching. [5] used DSC for both view-switching and coop-
erative packet loss recovery in a WWAN multiview video multicast
system. In this work, we study the use of a multiview video coding
structure based on DSC to facilitate cooperative view-switching to
reduce upload bandwidth from the server: even if users are in differ-
ent views, they can nonetheless help each other achieve low-bitrate
view-switching. To stimulate user cooperation, we model users’ in-
teraction as an indirect reciprocity game [6], where each user is as-
signed a reputation level. Users that help others will accumulate
high reputations, thus more likely to receive help from others. Using
Markov decision process (MDP) as a formalism, each peer makes
distributed decisions to maximize his aggregate utilities within his
lifetime. Simulation results show when the cost of helping others is
much smaller than the utility gained from others’ help, users fully
cooperate, which also helps reduce server’s upload bandwidth. As
the cost-to-gain ratio increases, users tend to behave differently at
different views: given peers can predict their future view navigation
paths probabilistically, a peer likely to enter a view-switching path
not requiring others’ help will also have less incentive to cooperate.
When the cost-to-gain ratio is very large, no users will cooperate.

The outline of the paper is as follows. We overview the for-
mulation of the IMVS system in Section 2. We model the optimal
decision making using MDP in Section 3. We present simulation
results and conclusions in Section 4 and 5, respectively.

2. PROBLEM FORMULATION
In this section, we first overview an IMVS system that supports peri-
odic view-switching by users. We then describe an interaction model
that captures users’ behavior in view-switching, and a multiview
video coding structure that facilitates cooperative view-switching
among peers. Finally, we propose an indirect reciprocity game to
stimulate user cooperation.
2.1. Overview of IMVS system
A scene of interest is captured by a large one-dimensional array of
evenly spaced M cameras. A server compresses video of each view
into coding segments ofK frames each, and provides IMVS service
to a group of N users, where N � M . Once a user selects a view,
he remains in this view for K consecutive frames. At the end of this
segment, he can switch to another view as the video is played back in
time uninterrupted. There is hence a maximum of one segment view-
switching delay. When a user switches views, he may request help
from other peers (cooperative view-switching), so that the amount of
downloaded video data from server can be reduced.

2.2. View Switching Model
Views are divided into two categories: anchor views and normal
views. When seeking interested views, a user first browses views

2285978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

� � � � � � � � � 	
 �

� �

� � � � � �

� � � � � � � � � � � �

 ! "

$ % & ' (

) * + , - . / 0 / 1 2 3

4 5 6

7 8 9 : ; <

Fig. 1. Example of our multiview video coding structure for M = 3 views,
segment size K = 3. Circles, squares and diamonds denote I-, P- and DSC
frames, respectively. Each frame Ff,v is labeled by its frame index f and
view v.

coarsely through anchor views. Once he reaches an interested an-
chor view, he can switch to neighboring normal views to refine view
selection. In this work, we assume that users switch interested an-
chor views frequently. After finding an interested anchor view and
remaining for one segment, they will likely seek another interested
anchor view in the next segment. Thus, anchor views are more fre-
quently selected (more popular) than normal views.

Suppose that there are nδ anchor views, which evenly divide
normal views into (nδ + 1) sections of nσ = (M − nδ)/(nδ + 1)
views each. At each view, a user can only switch to his left and
right closest anchor views, and nearby normal views. Specifically,
at an anchor view, a user will switch to the left and right closest
anchor views with probability Pδ , and the left and right normal view
sections (and current anchor view) with probability 1−Pδ . Similarly,
at a normal view, a user will switch to the left and right closest anchor
views with probability Pσ, and the normal views in the same section
with probability 1 − Pσ .

We model transition from view to view using a discrete time
Markov chain, and construct a M ×M transition matrix T , where
tx,y is the view transition probability of a user selecting view y after
viewing x. From earlier discussion on view switching model, if x is
an anchor view,

tx,y =

⎧⎪⎨
⎪⎩
Pδ/|Xδ | , if y ∈ Xδ

(1 − Pδ)/|Xσ | , if y ∈ Xσ

0 otherwise,

(1)

where, Xδ and Xσ denote view x’s closest anchor view set, and
nearby normal view set, respectively. If x is a normal view, tx,y can
be defined similarly.

2.3. Multiview Video Coding Structure and IMVS Service

Fig. 1 shows an example of our proposed frame structure. Each view
is encoded into segments of K frames. We encode the first seg-
ment using an intra-coded I-frame I1,v withK−1 trailing P-frames.
For the next segment, for view-switching we encode the first frame
FK+1,v into two versions. The first version is an intra-coded I-frame
IK+1,v , which can be decoded independently. The second version
is a DSC frame WK+1,v [4]. To encode WK+1,v , we use at most
three decoded P-frames PK,max(1,v−1), . . . , PK,min(M,v+1) as pre-
dictors, and use the I-frame IK+1,v as the target. As long as one of
the predictor frames is available at the decoder buffer, WK+1,v can
be correctly decoded, and the decoded frame is bit-by-bit equiva-
lent to the frame decoded from IK+1,v . WK+1,v is followed by
K − 1 trailing P-frames, and each of the following segments has
the same structure. Let LI , LW , and LP denote the frame size of
an I-frame, DSC frame, and P-frame, respectively, and averagely,
LI � LW > LP .

This structure can support cooperative view switching as fol-
lows. Suppose that a peer switches from view v to v′. If v′ is adja-
cent to v, he can ask the server to transmit the DSC frameWiK+1,v′

and the following P-frames to reconstruct the video in view v′. How-
ever, if v′ is not adjacent to v, he has to either receive help from other
peers or request from the server the I-frame in view v′. Using Fig. 1
as an example, suppose that the peer i switches from view 1 to view
3 after the first segment. If another peer is watching view 2 and
would like to share the reconstructed frame F3,2, then i only needs
to ask the server for the DSC frameW4,3 and the following P-frames
to reconstruct the video in view 3. If he cannot get help, he has to
request the I-frame I4,3 from the server.

2.4. Game Formulation: Indirect Reciprocity Game
In this work, we assume that the upload bandwidth of the server is
limited and expensive. Thus, it charges virtual currency from peers
that pull video data from it to compensate its cost, and b denotes the
price for the transmission of each single bit from the server. As dis-
cussed in section 2.3, when a peer switches to a non-adjacent view,
if he can get help from others, he will download the reconstructed
frame of the last segment from the helper for free, and will only
download a DSC frame from the server instead of an I-frame. Thus,
he can gain an utility g = b(LI −LW) for paying less to the server.
However, uploading a video frame will incur a cost c to the helper
due to the consumed bandwidth and CPU time, etc. Since users
are selfish, they want to receive others’ help, but do not want to co-
operate and upload video packets. In this work, to stimulate user
cooperation, we design a reputation-based mechanism, where peers
that keep helping others will accumulate good/high reputations, and
peers that have good reputations also tend to receive others’ help.
In this mechanism, peer i helping peer j is not because j directly
helped i previously, but j helped someone else. Thus, it is an indi-
rect reciprocity game.

2.4.1. Peer Reputation and Interaction
In this system, each peer i is assigned a discrete reputation value
ri ∈ R = {1, ..., L}. A larger value of ri means a better reputation.
Reputation values change as peers interact with each other. When a
peer needs help for cooperative view-switching, he first needs view
information of other peers to find a suitable helper. To implement
this, we can either let peers exchange their view information and
seek help in a distributed way, or have a central controller that tracks
peers’ up-to-date view information and assigns helpers to peers that
need help. For simplicity, we assume here that there is a trustworthy
local agent closed to the N peers, which tracks peers’ view switch-
ing, helps each peer find helpers, observes their interactions, and
updates their reputations. Our work can also be extended to a dis-
tributed system. Thus, in this centralized system,when peer j needs
help, the local agent randomly selects i from peers that can help, and
sends a help request. Upon receiving a help request, i takes an action
ai ∈ A = {1, . . . , L + 1}. The action ai is not a direct answer of
whether to help or not, but a reputation threshold. i sends the action
ai back to the local agent, who then compares j’s reputation rj with
the threshold ai. If rj ≥ ai, the local agent informs i to upload the
needed video data to j. Otherwise, the local agent informs j to pull
the I-frame from the streaming server. Thus, if ai = L + 1, i will
not cooperate regardless of j’s reputation.

2.4.2. Social Norm and Reputation Updating
Based on the previous observed interaction between peer i and j,
the local agent updates i’ reputation, since he is the decision maker,
while j’ reputation remains the same. The reputation is updated
following a social norm Q [6], which effects changes in a peer’s
reputation after an interaction:

2286

� � � � � � � � � �
�� 	
 � � � � � 	
 ��� � � � � � � � � � ���

��

 !

" # $ # % & ' () # * ($ +
, - . / - 0 1 ,

2 3 4 3 5 6
7 5 6 8 9 :

; < = > ? @ ; @ A >
B < A C = C @ D @ ; @ E ?

Fig. 2. An example of MDP.

Q =

(rj ≥ ri rj < ri

ai ≤ rj , uploading L ri
ai > rj , not uploading 1 ri

)
, (2)

where the rows ofQ denote the results of this interaction of whether
i uploads the requested frame to j. The columns ofQ denote j’s rep-
utation being larger or smaller than i’s reputation. When rj ≥ ri,
i will gain an immediate reputation L by helping j, or be punished
with an immediate reputation 1 by not helping. When rj < ri, no
matter whether i helps j, i’s reputation remains the same. With this
social norm, peers are encouraged to help those whose reputations
are larger than or equal to their own, while they are discouraged to
cooperate with others that have smaller reputations, since cooperat-
ing does not improve their own reputations.

Let ψ(ai, rj) and φ(ri, rj) be functions that return the row and
column indices of Q, respectively. If rj ≥ ai, ψ(ai, rj) = 1;
otherwise ψ(ai, rj) = 2. If rj ≥ ri, φ(ri, rj) = 1; otherwise
φ(ri, rj) = 2. Then, i’ reputation is updated by,

ri(t) = round
[
λri(t− 1) + (1 − λ)Qψ(ai,rj),φ(ri,rj)

]
,(3)

where round[·] is the rounding function, and λ is a parameter
weighting the past versus immediate reputation values.

Given this reputation system, helpers need reputation informa-
tion of users that need help to decide appropriate actions. In this
work, we consider that they also take the future interactions into con-
sideration. Since they do not know who they will interact with at a
later time, they need peers’ reputation distribution to assist their de-
cision making. Given that the local agent has the record of all peers’
reputations at different time instances, it can calculate the probabil-
ity mass function Pr(l) of each reputation value, l ∈ R, appearing
in the peer population since the beginning of the game,

Pr(l) =

∑Tc

t=1

∑N

i=1 I [ri(t) = l]

NTc
, (4)

where Tc is the current segment index, and I [·] is the indicator func-
tion. Let D = {Pr(1), Pr(2), ..., Pr(L)}. The local agent broad-
casts D to all peers periodically to assist their decision making.

3. OPTIMAL ACTION SELECTION WITH MARKOV
DECISION PROCESS

In this work, we formalize peers’ distributed decision making pro-
cess using MDP, which is used in previous work [7]. Each peer
considers actions taking future utility into consideration, and finds
the optimal actions to maximize his utility within his lifetime.

3.1. State Space, Action Space and State Transition Probability

For a peer i, MDP is a recursion with finite levels into the future,
as shown in Fig. 2, where each level t in the future is marked by
its states sti’s and actions atsi

’s. In this work, a state sti(ri, vi) rep-
resents reputation ri and view vi at the moment t peer i receives
a help request. Hence the state space is denoted as S = R × V ,

where V = {1, ...,M} and is the view space. At state sti , he re-
sponses to the help request by choosing action atsi

from the action
space A. From state-action pair (sti, a

t
si

), he transits to a new state
st+1
i (r′i, v

′
i) in the next level with probability P

st
i
→s

t+1

i
(atsi

), when

he receives another help request after playback of Ls video seg-
ments. Here, Ls can be learned from his past history. To derive the
state transition probabilities, we first derive its reputation and view
transition probabilities, respectively.

For action atsi
taken at time t, peer i’s reputation is updated us-

ing (3). Suppose that the user that needs this help is j with reputation
rj . In (3), Qψ(at

si
,rj),φ(ri,rj) can be one of three values: 1, ri or L.

Thus, the updated reputation of i can also only be one of three pos-
sible values. Let r′i(1), r

′
i(ri) and r′i(L) be the updated reputation

value when Qψ(at
si
,rj),φ(ri,rj) = 1, ri or L, respectively. Since i

does not know the exact value of rj , he assumes that rj follows the
reputation distribution D. Thus, the probability that the reputation
value updates to r′i = r′i(1) is
Pri→r′

i
(1)(a

t
si

) = P (Qψ(at
si
,rj),φ(ri,rj) = 1) = P (ri ≤ rj < atsi

)

=
∑

l: ri≤l<a
t
si

D(l). (5)

Similarly, we can derive Pri→r′
i
(ri)

(atsi
) =

∑
l: l<ri

D(l), and

Pri→r′
i
(L)(a

t
si

) = 1 − Pri→r′
i
(1)(a

t
si

) − Pri→r′
i
(ri)

(atsi
). Once

updated to r′i, i’s reputation stays the same at r′i, till the next instant
he receives another help request at state st+1

i (r′i, v
′
i).

The view transition probability follows the view transition ma-
trix T and is independent of the reputation transition probability.
From state sti , there are Ls segments and view transitions before i
receives another help request at state st+1

i . Let TLs

vi,v
′

i

denotes the en-

try of row vi and column v′i of TLs . Thus, the probability of switch-
ing from vi to v′i is Pvi→v′

i
= TLs

vi,v
′

i

. Therefore, given the above

discussion on reputation and view transition probabilities, the state
transition probability is P

st
i
→s

t+1

i
(atsi

) = Pri→r′
i
(atsi

)Pvi→v′
i
.

3.2. Utility Function
In this subsection, we derive peer i’s utility based on his state and ac-
tion. We first discuss his utility cost for helping others upload video
packets. Then, we study the utility gain he receives from others’
help. Finally, we derive the utility of his life time since the cur-
rent state sti. As discussed previously, helping one neighbor upload
video data will incur a cost c, and the user that receives this help
gains an utility g. When i is in state sti and take the action atsi

, he
assumes the reputation of the user that requests this help follows D,
and therefore, he will upload video packet with probability

Pu(a
t
si

) =
∑

l: l≥at
si

D(l). (6)

Thus, the cost incurred by the action atsi
is cPu(atsi

).
After this interaction, his reputation changes to r′i and he is in

view vi. He will keep the reputation r′i for Ls segments till the next
time he receives another help request at state st+1

i . During these
Ls segments, he may require others’ help, and the utility he/she can
gain from others’ help depends on his reputation r′i, the view vi he
currently watches, and other peers’ actions. Let P lsv denote the prob-
ability that he needs help when transferring to view v at the lsth seg-
ment after the current state sti , where v ∈ V and 1 ≤ ls ≤ Ls, and
let P vh denote the probability that a helper k can be found to help in
view v. The helper k is in state sk(l, vk) with probability D(l)Pvk

,
where l ∈ R and vk ∈ V . At sk, k will take action ask

following his
action policy, and only when r′i ≥ ask

, i can receive help from k.
Let U(r′i, vi) denote the utility he can gain from others’ help during
the Ls segments, and we have,

2287

200 400 600 800 1000 1200 1400 1600 1800 2000
1

2

3

a

Action

200 400 600 800 1000 1200 1400 1600 1800 2000
1

2

3

a

200 400 600 800 1000 1200 1400 1600 1800 2000
1

2

3

a

Segment Index

Fig. 3. User 1’ actions at each segment. (Top): c/g = 0.3, (middle):
c/g = 0.6, and (bottom): c/g = 0.9.

U(r′i, vi) = g

Ls∑
ls=1

⎧⎨
⎩

M∑
v=1

P lsv P vh

⎡
⎣ L∑
l=1

M∑
vk=1

D(l)Pvk
I[r′i ≥ ask

]

⎤
⎦

⎫⎬
⎭ (7)

Given above analysis, we can derive the utility function for peer
i’s lifetime since the current state asW (sti),
W (sti(ri, vi)) = −Pu(atsi

)c +
∑

q∈{1,ri,L}

Pri→r′
i
(q)(a

t
si

)U(r′i(q), vi)

+η
∑

q∈{1,ri,L}

M∑
v′

i
=1

Pri→r′
i
(q)(a

t
si

)Pvi→v′
i
W (st+1

i (r′i(q), v
′
i)) (8)

where η is the discounting factor. In (8), we derive W (sti) recur-
sively. The first term is the utility cost for helping others. The second
term is the utility gain he receives through others’ help in the Ls seg-
ments. The last term is his life time utility since the next state st+1

i . i
wants to find the optimal action at each state to maximize the utility
for his life time. To achieve this, we use dynamic programming, and
let the life time utility at the H th state after sti , W (st+Hi) = 0, if
ηH < 0.1, to avoid the infinite recursion.

4. EXPERIMENTATION
This section evaluates the system performance by simulations. In the
simulation setup, the server provides IMVS withM = 11 views to a
group of N = 3 users. The video segment size is K = 10. The av-
erage sizes of I- and DSC frame are 5 and 1.5 packets, respectively.
For the view switch model, the 4th and 8th views are anchor views,
which divide the rest normal views into 3 sections with nσ = 3
views per section. If a user is in a normal view, the probability of
switching to the closest anchor views is Pσ = 0.7. If he/she is in an
anchor view, the probability of switching to the closest anchor views
is Pδ = 0.3. In the reputation system, L = 2 and λ = 0.3. The
discounting factor η = 0.9. We test the system for 2000 segments.

Fig. 3 shows user 1’s actions in each segment, and for other users
we have similar observation. The top figure shows his/her actions
when the cost to gain ratio c/g = 0.3, where he always play a = 2
at the steady state, and we observe that users reputations are all 2.
Since a = 2 means he will cooperate with others whose reputation
is larger or equal to 2, he fully cooperates. This is because the cost
is comparatively low, and cooperating help him receive high utility.
At the bottom figure when c/g = 0.9, the cost is high, and he will
receive negative utility, if he helps upload video packets. Thus, he
tends to not help and plays the action a = 3 at the steady state, which
means he does not cooperate regardless of others’ reputations. For
the case when c/g = 0.6, we observe that sometimes he plays action
a = 3 and do not cooperate, but sometimes he plays action a = 1
or 2 and cooperate. To understand this better, we study his actions at
different views. Table 1 shows the percentages of his actions from

v1 v2 v3 v4 v5 v6
a = 1 11% 12% 0 8% 5% 5%
a = 2 89% 88% 0 92% 94% 95%
a = 3 0 0 100% 0 1% 0

Table 1. Percentages of users’ actions at different views.
v1 to v6. Views from v7 to v11 are symmetric to views from v5 to
v1, which have similar results and are omitted in this table. From
this table, we observe that when he receives requests at v3, most of
his responses are a = 3 and he does not cooperate. When he is in
the other views, he uses a = 1 or 2 and cooperates. This is because
v3 is adjacent to an popular anchor view v4 that is also the only
popular view around v3. Thus, a user in v3 probably switches to v4
in the next segment, and this view switching does not need others’
help. Therefore, he also has less incentive to cooperate and maintain
a high reputation.

We also evaluate the reduction of bandwidth consumption at the
server side due to user cooperation as Cd = (LI−LW)nh

LInn
, where nh

denotes the number of times that the 3 users get help from others,
and nn denotes the number of times that the 3 users switch to non-
adjacent views. When c/g = 0.3, users fully cooperate with each
other and Cd = 37%. When c/g = 0.6, although users do not coop-
erate at view 3 and 9, they cooperate at other views and Cd = 33%.
Thus, our indirect reciprocity scheme can simulate user cooperation
and reduce bandwidth consumption.

5. CONCLUSION
In this work, we propose an IMVS system that supports coopera-
tive view-switching. To stimulate user cooperation, we model users’
interaction as an indirect reciprocity game. Using MDP as a formal-
ism, each peer makes distributed decisions to maximize his aggre-
gate utilities within his lifetime. Simulation results show that when
the cost of helping others is much smaller than the utility gain from
others’ help, users fully cooperate, which also helps reduce server’s
upload bandwidth. As the cost-to-gain ratio increases, users tend to
behave differently at different views: given peers can predict their
future view navigation paths probabilistically, a peer likely to enter
a view-switching path not requiring others’ help will also have less
incentive to cooperate. When the cost-to-gain ratio is very large, no
users will cooperate.

6. REFERENCES

[1] G. Cheung, A. Ortega, and N. Cheung, “Interactive streaming of stored
multiview video using redundant frame structures,” IEEE Transactions
on Image Processing, vol. 20, no. 3, pp. 744–761, March 2011.

[2] H. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “Insights into pplive:
A measurement study of a large-scale P2P IPTV system,” in IPTV work-
shop in conjunction with WWW2006, May 2006.

[3] W. Lin, H. V. Zhao, and K. J. R. Liu, “Incentive cooperation strategies
for Peer-to-Peer live streaming social networks,” IEEE Transaction on
Multimedia, vol. 11, no. 3, pp. 396–412, April 2009.

[4] N.-M. Cheung, A. Ortega, and G. Cheung, “Distributed source coding
techniques for interactive multiview video streaming,” in 27th Picture
Coding Symposium, Chicago, IL, May 2009.

[5] Z. Liu, G Cheung, and Y. Ji, “Distributed source coding for WWAN
multiview video multicast with cooperative peer-to-peer repair,” in IEEE
International Conference on Communications, Kyoto, Japan, June 2011.

[6] Y. Chen and K. J. R. Liu, “Indirect reciprocity game modelling for coop-
eration stimulation in cognitive networks,” IEEE Transaction on Com-
munications, vol. 59, no. 1, pp. 159–168, Jan. 2011.

[7] H. Park and M. van der Schaar, “A framework for foresighted resource
reciprocation in P2P networks,” in IEEE Transactions on Multimedia,
January 2009, vol. 11, no.1, pp. 101–116.

2288

