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ABSTRACT 
Emotions are an important part of human communication and 
are expressed both verbally and non-verbally. Common non-
verbal vocalizations such as laughter, cries and sighs carry 
important emotional content in conversations. Sighs often are 
associated with negative emotion. In this work, we show that 
emotional sighs exist along both ends of the valence axis 
(positive-emotion vs. negative-emotion sighs) in spontaneous 
affective dialogs and that they have certain distinct multimodal 
characteristics. Classification results show that it is possible to 
differentiate between the two types of emotionally valenced 
sighs, using a combination of acoustic and gestural features 
with an overall unweighted accuracy of 58.26%.  
 
Index terms—Nonverbal vocalizations, multimodal fusion, 
support vector machine 

1. INTRODUCTION 
Non-verbal vocalizations, such as laughter, grins, giggles, 
cries, sighs, etc, often occur naturally as part spontaneous 
conversations. These cues bear no linguistic content, and 
studies have shown that they are often associated strongly with 
the speaker’s affective state [1, 2]. In fact, these nonverbal 
vocal cues are considered key to understanding distressed and 
atypical human behaviors in a variety of interaction domains 
such as marital therapy, and autism [3, 4].  Effectively 
recognizing and analyzing these vocalizations is hence 
essential in better understanding their roles not only in 
expressing an individual speaker’s emotion but also in 
sustaining natural spoken dialogs. In the present work, we 
focus on analyzing one specific type of non-verbal 
vocalizations, sighs, and their significance in affective spoken 
interactions. In this work, sighs are defined as the audible deep 
intake and release of breath. Research in psychology has 
shown that, in general, sighs can be associated with different 
affective states (positive vs. negative), e.g., frustrated sigh and 
sigh of relief [5]. The objective of this work is two folds. The 
first goal is to analyze the occurrences of sighs in relation to 
the speaker emotional state. The second goal is to analyze 
whether multimodal features describing sighs carry predictive 
power in differentiating between the affective states of sighs. 
To predict the emotional content of sighs, we perform a 
classification experiment to distinguish negative from positive 
valenced sighs. 
 
Various previous research works have analyzed non-verbal 
vocalization cues, and shown a strong relationship between 
these cues and the emotional states of a speaker along with 
many other factors such as cultures and age [1, 2]. Whereas 
laughter and cries are among the most researched non-verbal 
vocalization cues [6-9], there is only limited engineering work 
in analyzing the affective nature of sighs. Research in 
psychology [5] has documented the existence of different 

types of emotional sighs. In this work, we analyze this 
phenomenon using multimodal cues extracted from a dyadic 
affective interactive database, the IEMOCAP database [10]. 
The IEMOCAP database was used because it contains 
spontaneous interactions exemplifying various human 
emotions. The database was annotated with two types of 
emotional descriptions, categorical (e.g., happy, sad, neutral, 
frustrated, etc.) and dimensional (e.g., valence, activation, and 
dominance) labels.  
 
We manually annotated and segmented occurrences of sighs in 
the IEMOCAP database. The emotional content of each sigh is 
approximated by the emotion labels associated with the closest 
neighboring utterances from the same speaker. This led to the 
annotated sighs in our data being categorized into either 
positive-emotion sigh (indicated by high valence value) or a 
negative-emotion sigh (indicated by a low valence value), 
supporting the observation in [5]. Analysis into the 
characteristics of the sigh not only suggested their occurrence 
with negative and positive emotions, but a considerable 
portion was also associated with rather ambiguous emotions 
such as neutrality. A support vector machine classifier was 
used to perform automatic classification of positive-emotion 
sighs vs. negative-emotion sighs using multimodal 
information. We found that whereas the negative sighs are 
better characterized by the acoustic features, the gestural 
features have better discriminative power for the positive 
class. We achieve an unweighted accuracy of 58.26% in 
recognizing the emotional content of sighs.  
 
In Section 2 we describe the research methodology, in section 
3 we describe and discuss the experimental results, and finally 
report our conclusions in Section 4.  

2. RESEARCH METHODOLOGY 
2.1 Database and Annotation 
 
2.1.1 Database Description 
 
We used the IEMOCAP database [8] for the present study. 
This multimodal database offers an opportunity to investigate 
different modalities in expressive human-human spoken 
dialogue interaction. It is composed of five different sessions, 
each involving a different pair of male and female professional 
actors engaged in spoken dialog interactions. The actors 
performed from scripted plays as well as engaged in 
spontaneous improvisation conversations. In addition to audio-
video recordings, for each spontaneous dialogue, 61 markers 
(two on head, 53 on face and three on each hand) were 
attached to one of the interlocutors to record (x, y, z) positions 
of each marker (MOCAP features). Figure 1 illustrates the 
placement of the markers. The markers were then placed onto 
the other actor and recorded again with the same set of 
scenarios to complete the session. For our study, we consider 
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only the spontaneous dialogue conversations, since those 
interactions more closely reflect natural human behaviors in 
dialogs.  
The data were annotated with two types of emotional 
descriptions over the manually segmented speaking turns, 
referred as “utterances” in this work. One emotional attribute 
type was based on categorical labels (anger, sad, happy, 
neutral, excited, frustrated, etc.) using at least three naïve 
evaluators per utterance. Majority voting was used to assign 
the final categorical emotion label to each utterance. The 
second emotional attribute was based on dimensional 
evaluation (valence, activation, dominance) rated on a scale of 
1 to 5 with at least two naïve evaluators. The average value of 
the dimension attribute is used to represent the final 
dimensional emotion attribute for each utterance.  

 
Fig 1.  Motion Capture Markers Placement 

 
2.1.2 Annotation of Sighs 
 
The definition of sighs used in this work is a deep intake and 
release of breath that was audible in the audio channel. The 
annotation and segmentation of sighs were based on human 
judgment. Three different evaluators annotated sighs on non-
overlapping portions of the IEMOCAP database; marking the 
start and end point of each sigh. The software Wavesurfer [11] 
was used to perform the annotation. This method of annotation 
requires that a sigh is audible using only the acoustic 
information. Also the sighs are discernible for individual 
speakers across each session in the audio stream hence 
annotated separately. There were a total of 502 sighs 
segmented; 346 of which were male sighs and 156 of which 
were female sighs. A table listing the number of sighs tagged 
per session is presented in Table 1.  
 

Table 1. Distribution of Sighs across Sessions 

Session Number Number of Sighs Annotated 
Male Female 

1 36 13 
2 198 86 
3 32 24 
4 46 8 
5 34 25 

Total 346 156 
 

In this work, we define the emotional content of each sigh by 
valence attribute of the closest utterance (or valence of the 
corresponding speech utterance if the sigh happened within a 
speech turn) of the same speaker. Figure 2 shows a histogram 
distribution of the valence values of all annotated sighs. The 
figure shows a clear bi-modal distribution of valence values 
for sighs. This support the claim that there are two different 
types of emotional sighs (positive-emotional sighs and 
negative-emotional sighs).  
 

For the present work, we focus our analysis on these two types 
of emotional sighs: positive-emotional sighs and negative 
emotional sighs. Positive-emotional sighs are defined as sighs 
that have an associated valence dimension rating greater than 
3, whereas negative-emotional sighs have a rating less than or 
equal to 3. As can be seen (Figure 2), there are more sighs 
associated with negative emotions. There are a total of 388 
negative-emotion sighs and 114 positive-emotion sighs. Since 
we also use the MOCAP (visual gesture) features, and only 
one of the speakers is captured here, we have a subset of 252 
negative-emotion sighs and 62 positive emotion sighs, totaling 
314, with both acoustic and MOCAP information. 

 
Fig 2. Valence distributions of sighs 

 
2.2 Acoustic and MOCAP Feature Extraction 
 
We extracted 13 Mel Frequency Cepstral coefficients. They 
have shown to be effective in emotion recognition tasks [12]. 
Using Praat [13], the features were extracted every 10ms over 
the all of the speakers’ utterances. The mean and variance of 
each of the MFCCs were computed over the period of the sigh, 
resulting in a total of 26-dimensional features vector used for 
classification.  
 
For the MOCAP features we calculated the mean and variance 
of the velocities of each of the markers over the sigh period. 
Speaker-wise normalization was performed on the velocity 
values using mean subtraction for each speaker in the 
database. The mean is the average velocity of each marker 
over the whole session. Since we had 63 markers in all, this 
gave as a 126 dimensional feature vector. Normalization was 
done to eliminate the effect of individual speaker 
characteristics. Since this feature dimension is too high given 
the number of data samples we reduce the dimensionality 
using principal component analysis.    

3. EXPERIMENT RESULTS AND 
DISCUSSION 

3.1 Emotional Content in sighs 
 
In this section we analyze the categorical emotion labels 
associated with these two types of sighs. Table 2 and Table 3 
show a breakup of the number of different categorical emotion 
labels for each type of sigh (Table 2 corresponds to female 
speakers and Table 3 corresponds to male speakers). 
Unlabeled corresponds to the utterances where there is no 
majority agreement in the emotion evaluation of the original 
IEMOCAP data. 
 
The first observation is that for negative-emotion sighs, the 
dominant emotion class labels are frustrated and sad. The 
emotion label of frustration has been shown to be relatively 
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difficult to recognize compared with basic categorical emotion 
classes (happy, sad, and angry). This observation shows that 
there can be a potential application by utilizing the emotional 
type of sighs to improve the detection of frustration.  
 

Table 2. Emotional Tags for Female Sighs 
Emotion Negative Sighs Positive Sighs 

Number Percentage Number Percentage 
Frustrated 139 27.68% 8 1.59% 

Happy 0 0% 2.78% 10% 
Sad 145 28.88% 6 1.20% 

Excited 0 0% 39 7.77% 
Neutral 44 8.76% 25 4.98% 
Angry 14 2.78% 0 0% 

Unlabeled 46 9.16% 22 4.38% 
Total 388 77.29% 114 22.70% 

 
Also there are a substantial number of emotional utterances 
across both types of sighs that have an emotion label of 
neutral. Neutral can often be viewed as an ambiguous emotion 
class (or a lack of true emotion) because of the fuzziness in the 
emotion definition. Therefore, neutral is often associated with 
having valence and activation close to a rating of 3 (on a 
typical scale from 1–5). It is interesting to observe that while a 
sigh is often perceived as a strong emotion marker (as shown 
in a clear bimodal distribution of valence in sighs), 
approximately 13.74% of sighs have associated categorical 
emotional labels of neutral. This suggests that any further 
analysis and characterization of the neutral "category" should 
also consider nonverbal cues in addition to the verbal ones.  
 
The third observation is that the unlabeled sigh shows a 
similar trend to the neutral emotional class; it represents a 
substantial percentage of the sighs particularly in the case of 
positive-emotion sighs. While the majority of the positive-
emotion sighs are labeled as excited, an almost equal 
percentage of them are associated with either neutral or 
unlabeled. One implication is that when a sigh is associated 
with positive emotion, it may be difficult to assign a canonical 
categorical label to describe it, e.g., sighs of relief. This 
observation shows that by simply stating the fact that there is 
an occurrence of sigh can be beneficial in providing a 
description of a subtle (non-prototypical) emotion class. 
 
3.2 Classification on the Emotional Types of Sighs  
 
3.2.1 Acoustic feature classifier 
 
In this section, we describe an experiment to examine the 
predictive power of acoustic cues in recognizing the two 
different emotional types of sighs (positive-emotion sigh vs. 
negative-emotion sighs) using a support vector machine 
classifier (SVM) with acoustic cues. For this experiment we 
take the entire set of sighs (as we are not using the MOCAP 
data for this part of the experiment). 
 
In the experiment, we use leave-one-speaker-out cross 
validation. Since the class label distribution is heavily biased 
toward negative-emotion sighs, the metric used in this 
classification task was the unweighted accuracy (average 
accuracy of each class label). A linear kernel was chosen for 
the SVM because it outperformed other kernels (quadratic and 
radial basis functions) through our empirical experiments.  
 
When we consider the class-wise accuracy, there is a dramatic 
difference in performance between the positive and negatively 
valenced cases (Table 4). One of the possible reasons could be 

the difference in the sizes of the datasets for the two classes, 
with fewer instances for the positive class. To explore whether 
this can be improved with addition of visual features, we 
considered incorporating the available MOCAP features.   
 

Table 3. Summary of SVM Classification 
Model Unweighted Accuracy (%) 
Chance 50 
SVM 60.16 

Table 4. Class-wise Accuracy Summary 
Experiment Positive Negative 

Using only the MFCC 
 derived features on  

the entire set of sighs 
28.95 86.08 

 
3.2.2 Multimodal classifier 
 
For this experiment we used a subset of sighs where both the 
modalities were available, numbering 314. We performed a 
similar classification on the subset of sighs using only acoustic 
features, and then only the MOCAP features. Finally the two 
classifiers were combined at the decision level to improve the 
overall accuracy of the classification. These results are not 
directly comparable to the previous classification as we are 
using only a subset of the database now. 
 
We performed principal component analysis on the MOCAP 
features as the dimensionality of the features vector is high, 
given the number of data samples. In order to find the optimal 
number of principal components, we divided the dataset into a 
training dataset composed of 8 speakers, 1 speaker for 
development set and 1 for testing. We noted the unweighted 
accuracy over the development set as the number of principal 
components was increased from 5 to 75 in steps of 5. We 
achieved maxima at 55 principal components. We use the 
same number of principal components for the test set. Our 
analysis on the reduced dimensionality reflects that we are 
able to preserve almost all the variance in the dataset, while 
reducing the dimensionality by more than half. In order to 
keep the experiments consistent we chose similar division of 
dataset on the acoustic features.  
 
Finally we make the combined decisions based on the 
distances of the data-points from the decision hyper-plane in 
the two SVM classifiers. When there was a conflict in the 
decisions of the two classifiers, we compared the weighted 
distances of the data-points from the decision hyper-plane. A 
test on the development set suggested an optimum scaling 
parameter, α = .06 on the distances of the acoustic feature 
based classifier as compared to the MOCAP feature based 
classifier. This was achieved after a grid test on the weights by 
scaling the distances in the range of [.01 to .99] and then [1 to 
100] in the steps of .01 and 1 respectively. This decision rule 
is represented in equation 1.   If the scaled distance of one 
classifier was more than the other, we assigned the sigh to be 
of that class. In case there was same decision from both the 
classifiers that itself was taken as the final decision. 
 
If  classacoustic  ≠  classmocap  and  

( . ) ( . )acoustic acoustic acoustic mocap mocap mocapw x b w x b  

then class = classacoustic  
else class = classmocap                   (1)   
Here acousticw and mocapw  represent the weight vectors, 
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acousticx and mocapx the data points and b the bias terms for 

the individual classifiers. A point to note here is that the 
parameter α does not represent the actual weightage given to 
the individual features, as it scales the distance from two 
SVMs, which in themselves classify data-points having 
different dimensionality. 
 

Table 6. Summary of SVM Classification 
Model Unweighted 

Accuracy 
(%) 

Chance 50 
SVM using acoustic features 55.74 
SVM using MOCAP features 57.66 

Fusion  58.26 

Table 7. Class-wise Accuracy Summary 
Experiment Positive Negative 

SVM using acoustic features 24.19 87.30 
SVM using MOCAP features 40.32 75.00 

Fusion  40.32 76.19 
 
3.2.3 Results of Classification Experiment 
 
A summary of the classification accuracy is presented in Table 
6 and 7. From the recognition rate, one can notice that the 
acoustic features are good at recognizing the negative class of 
sighs whereas the MOCAP features show a slightly better 
performance for the positive class. While further analysis is 
necessary to substantiate this observation further, we 
hypothesize that this may have been due to the fact that 
positive-emotion sighs have more reflection in the bodily 
expressions of the person and the acoustic cues carry more 
relevant information for the negative-emotion sighs.  
 
We observe lower accuracies in this experiment as compared 
to the very first experiment as we are using a subset of 
database. But in order to make a more informed comparison 
between the role of MOCAP features and acoustic features it 
was important that we used the same dataset. The class 
accuracy for the positive class is lower in comparison to the 
negative class possibly because the positive sighs are fewer in 
number as compared to the negative sighs. Another drawback 
of the database is the uneven distribution in the number of 
sighs across each individual speaker. This sometimes leads to 
small number of training instances and a relatively larger 
testing set. This affects the accuracy of the classifier in that 
particular fold for cross-validation. 
 
Despite these drawbacks we observe that there is an increase 
in the overall unweighted accuracy using the MOCAP 
features. The MOCAP features are substantially more efficient 
in capturing the positive sighs. We observed that during 
fusion, the algorithm chose the MOCAP classifier decision 
more often than the acoustic classifier. Only when the distance 
of a data sample in the acoustic feature space was very far 
away from the decision boundary, indicating more confidence, 
the fusion mechanism chose the acoustic classifier over the 
MOCAP classifier. 

4. CONCLUSION AND FUTURE WORK 
Nonverbal vocalization is a natural and integral part of human 
communication. It often carries strong emotional information. 
In this work, we analyzed a specific nonverbal vocalization, 

the sigh, using an emotionally-rich database of spontaneous 
dyadic interaction. The results underscore the importance of 
the emotional interpretation of sighs and suggest the feasibility 
of using low level acoustic cues as well as body movement to 
predict the different emotional content of each sigh. 
 
One of the first critical steps that we are planning to do is to 
acquire more instances of sighs across multiple natural 
conversational databases. Also, since there exists such a strong 
interpretation of non-verbal vocalizations in understanding the 
specific affective state of the speaker, we need to incorporate 
this information to enhance the capabilities of automatic 
emotion recognizers. This may be especially useful for 
detecting hard-to-recognize or subtle ambiguous states, such 
as frustration and neutrality. Another interesting observation 
that we have found in this database is that there is a positive 
correlation between the numbers of occurrences of sighs 
between the dyad across sessions which suggests a 
phenomenon that interacting dyads often exhibit such 
nonverbal vocalizations together as they interact. With 
improved insights into the role of nonverbal vocalizations in 
human communication, we can contribute to the design of a 
better and natural dialog interface. 
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