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ABSTRACT
The usual strategy for computing a distance between two

distributions consists of modeling the distributions in feature

space, and of computing the distance between the models.

We propose here to model the distributions of points by using

unsupervised trees. Our main contribution is the definition

of a tree-based approximation of the Kullback-Leibler diver-

gence for very large feature spaces, from which we derive a

symmetric distance.

Our tree-based KL divergence consists first of building

for each set of samples a balanced tree. Then, for any pair

of sets of samples, we effectively compute the KL divergence

between the empirical distributions at the leaves for the set

used to build the tree, and the empirical distribution at the

leaves for the other set.

We show experimentally on synthetic data the consis-

tency between this quantity and the exact KL divergence, and

demonstrate its efficiency for both unsupervised and super-

vised classification on multiple standard real-world data-sets.

Our main application is the characterization of abnormal

neuron development.1

Index Terms— Distance measurement, Tree data struc-

tures, Biological cells

1. INTRODUCTION

Computing the distance between two distributions of points

in a high dimensional space remains an important challenge.

The usual strategyconsists of first modeling the distribu-

tions using a continuous density function such as a mixture

of Gaussians, beta law, etc. In such cases, parameters of

probability density functions are estimated using maximum

likelihood [1], often through an alternating procedure such as

expectation maximization [2]. One drawback of this method

is its difficulty in processing high-dimensional data-sets.

Real-world data-sets often do not fit to a known continuous

function, or a single continuous function, and such models are

not efficient enough to model both discrete and continuous

features.

Recently, specifically in speech recognition [3] and com-

puter vision [4, 5, 6, 7], it has been shown that discretization

1This work was supported by the Swiss National Science Foundation

Fig. 1. The genotype of neurons determines their morpho-

dynamics. Neurons can be slow or fast, neurites can grow

or withdraw with different frequencies, etc. By classifying

the neurons, we predict if classes of neurons are close or not,

depending on their morphodynamical signature (speed, accel-

eration, etc.).

of the feature space leads to a better approximation of distri-

butions. The corresponding method, dubbed “bag-of-feature”

(bof) [4, 5, 6, 7] or “bag-of-words” [3] consists of partition-

ing the feature space, and, of estimating the empirical dis-

tributions over the component of the partition. These tech-

niques usual rely on a Voronoi partitioning obtained by using

k-means [4, 5, 6, 7], or on unsupervised trees [8]. The advan-

tage with this latter approach is its computational efficiency

and good behavior in high dimensional spaces.

Once distributions are modeled, distances between mod-

els can be computed. For instance with the Kullback-Leibler-

based distances for continuous densities [9], or – in the dis-

crete case – with the simple Euclidean distance and the Earth

mover distance [4, 5, 6, 7].

In this paper, we focus on the discrete case. We propose to

model distributions using unsupervised oblique kd-tree [10].

This choice has several advantages [11, 12]: they are adapted

to high dimensional feature space, they are easy to learn, there

is no optimization problem, no choice of continuous function,

and they can mix categorical features and continuous features.

The main contribution of this paper is the definition of a

tree-based approximation of the KL-divergence, from which
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we derive a symmetric distance.

In section 2, we describe our framework, and define nota-

tion and objectives. Section 3 presents the proposed distance,

and section 4 gives experimental results. In the experiments,

we propose an application to supervised classification of neu-

rons, the objective being to characterize the morphodynamics

of neurons in videos (Figure 1).

2. FRAMEWORK

Let Xi = {Xi,1 . . . Xi,Ni
} be a set of Ni points in a feature

space. Let Qi denote the distribution of Xi.

In the case of videos for instance, Xi could stand for a

set of SIFT key points [4, 5, 6, 7] in the video #i. In natural

language processing, Xi could represent a set of words [3] in

document #i. Our objective is to learn a classifier which can

classify any Xi.

To achieve this goal, we want to define a distance d be-

tween Xis, from which we will derive a kernel

Ki,j = exp

(
−d2(Xi,Xj)

2σ2

)
(1)

where σ is a scale parameter [4, 5, 6, 7].

As stated in the introduction, a standard strategy consists

of modeling the distributions Qi by first discretizing the space

using the k-means algorithm on the aggregated data. Then,

the empirical distribution over the resulting clusters are com-

puted for each instance i. In contrast, we model each distri-

bution Qi by using unsupervised kd-trees TXi
[10].

We finally formulate the problem as follows: given two

sets of points Xi and Xj , and given the two unsupervised

trees TXi and TXj built from these sets respectively, what is

the distance d(Xi,Xj) between the two instances indexed by

i and j ?

3. TREE-BASED KL DIVERGENCE DISTANCE

3.1. Method

Given two sets Xi and Xj , we propose to compare the struc-

tures of the trees TXi and TXj built from them, with the distri-

bution of points Xi and Xj . More specifically, points Xi are

passed through the tree TXj
and points Xj are passed through

the tree TXi
. We then consider the distributions of Xi in the

leaves of the tree TXj
and the distributions of Xj in the leaves

of the tree TXi . Intuitively, if Qi and Qj are similar, the points

Xi should reach almost all the leaves of the tree TXj and the

points Xj should reach almost all the leaves of the tree TXi
.

Also, if Qi and Qj are not similar, and supposing that Qi and

Qj are very distant, only one leaf of TXj
is reached by the

points Xi, and only one leaf of TXi is expected to be reached

by the points Xj .

Formally, let TXi
(Xj) be a vector standing for the distri-

bution of the points Xj over the leaves of TXi
. A Ni-leaf tree

TXi
is built such that each component of the vector TXi

(Xi)
equals 1

Ni
. This means that the distributions TXi(Xi) and

TXj
(Xj) are uniform.

In order to measure the distance between instances i and j,

we consider the distance between the distributions TXi
(Xj)

and TXi(Xi) as well as the distance between the distributions

TXj (Xi) and TXj (Xj). For that, we propose the Kulback-

Leibler-based divergence:

d(Xi,Xj) =
1

2
KL [TXi(Xj), TXi(Xi)] + . . .

1

2
KL

[
TXj

(Xi), TXj
(Xj)

]
(2)

where KL [TXi
(Xj), TXi

(Xi)] is the Kullback-Leibler diver-

gence:

KL [TXi(Xj), TXi(Xi)] =

Ni∑
n=1

T n
Xi

(Xj) log
T n
Xi

(Xj)

T n
Xi

(Xi)
(3)

where T n
Xi

(Xj) is the nth component of the vector TXi
(Xj).

In other words, T n
Xi

(Xj) is related to the number of points

Xj,k that reach the nth leaf of the tree TXi
.

Then, if Qi and Qj are similar, the distributions TXi
(Xj)

and TXi(Xi) are equal, and the divergence measure reaches

its minimum value: KL(TXi(Xj), TXi(Xi)) = 0. On the

contrary, if Qi and Qj are widely separated in the feature

space, the points Xi should fill only one leaf of the tree TXj

and the points Xj should fill only one leaf of the tree TXi
.

In this case, TXi(Xj) and TXj (Xi) have a binary form, i.e.

only one component equals one and the others equal zero, and

then, the distance d(Xi,Xj) must reach its maximum value:

d(Xi,Xj) =
1
2 (logNi + logNj).

3.2. Computational cost

For Parzen-windows [13], Gaussian kernels [14], and mixture

of Gaussians [9], the complexity for computing the distance

between two sets of points is O(NiNj) where Ni and Nj

denote the number of points for instance i and j respectively.

This may be computationally difficult if Ni and Nj are high

or if the number of features is high.

In comparison, our method achieves a significant lower

complexity bound. The complexities for building the two

trees are O(Ni log(Ni)) and O(Nj log(Nj)) respectively.

The complexities for passing the samples Xi in the tree TXj

is O(Ni log(Nj)) and the complexities for passing the sam-

ples Xj in the tree TXi is O(Nj log(Ni)). Thus, the final

complexity is O((Ni +Nj) log(NiNj)).

4. EXPERIMENTS

4.1. Simulated data-set

Two sets of points Xi and Xj are generated such that their

corresponding distributions Qi and Qj are Gaussians with
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means μi and μj respectively and diagonal covariance ma-

trices Σi = Σj . In this case, the Kullback-Leibler divergence

takes the value: 1
2 (μi − μj)

T (μi − μj). In Figure 2, we

plot this value, the proposed approximation of the Kullback-

Leibler-based divergence of Eq. (2) for different number of

points, as a function of the Euclidean distance between μi

and μj .

We note that the proposed Kullback-Leibler-based diver-

gence of Eq. (2) nearly fit with the theoretical value of the

Kullback-Leibler divergence.

For an intuitive understanding, we discuss the extreme

values that are reached. If μi = μj , we observe that our

tree-based distance d(Xi,Xj) �= 0 when the theoretical value

equals 0. This is due to the fact that different subsequent real-

izations of a given Gaussian distribution are not exactly the

same. If the Euclidean distance between μi and μj tends

towards infinity, the tree-based distance (2) never tends to-

wards infinity. This is due to the finite number of points

(Ni and Nj) for each realization. For instance, considering

that only one leaf of the tree is reached and the Euclidean

distance between μi and μj tends to infinity, we can easily

show that the proposed distance equals d(Xi,Xj) = log(N)
where N = Ni = Nj is the number of leaves. Thus, if

N = 10, d(Xi,Xj) = 2.3, if N = 100, d(Xi,Xj) = 4.6,

if N = 1, 000, d(Xi,Xj) = 6.9, and if N = 10, 000,

d(Xi,Xj) = 9.2, which correspond to the rightmost values

displayed.
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Fig. 2. Comparison between the theoretical Kullback-Leibler

distance and the proposed tree-based distance (Eq. (2)). The

distance value is plotted as a function of the Euclidean dis-

tance between the means of the two generated Gaussians.

4.2. Unsupervised classification

In this section, we compare the tree-based distance (Eq. (2))

and the bof-based distance for an unsupervised image classi-

fication task. We use the k-means technique to group similar

data together. A fifty-fold cross validation is used to estimate

the mean error rate and standard deviation. At each itera-

tion, for each class, 20 objects are sampled from the database.

The error e is defined as a function of the pair-wise error:

e = 1 − TP+TN
TP+FP+FN+TN where TP denotes a true positive

decision, TN denotes a true negative decision, FP denotes a

false positive decision, and FN denotes a false negative de-

cision.

In Table 1, we report errors for three data-sets: the CBCL

face and car data-set2, the Amsterdam Library of Object Im-

ages [15] (ALOI), and the Head Pose Image Database [16]

(HPID). Results show that our method (treeKL) outperforms

the baseline (bof) two times out of three in terms of average

error, and is more stable on all three. Also, our method does

not rely on the setting of sensitive parameters.

treeKL bof

CBCL 0.27±0.06 0.28±0.12

ALOI 0.06±0.04 0.19±0.13

HPID 0.24±0.08 0.18±0.08

Table 1. The mean error rates and the standard deviations are

reported for the three data-sets (CBCL, ALOI, and HPID).

Two distances are used for the k-means: the tree-based dis-

tance (Eq. (2)) (treeKL) and the bag-of-feature-based dis-

tance (bof) that considers the Euclidean distance between his-

tograms.

4.3. Application to supervised classification of neurons

The characterization of cell morphology and dynamics is an

important research topic in modern human biology [17]. Re-

cent work in oncology in particular has shown that cell dy-

namics provides important information about the cell geno-

type [18]. We are interested here in the morphodynamics of

neurons as captured in videos during their development.

In each video, neurons are segmented and tracked [19],

and each neuron is then associated to morphodynamical fea-

tures such as speed information, acceleration information, in-

formation about evolution of the shape of each element of the

neuron (see Figure 1), etc. A total of 95 features are extracted.

One experiment corresponds to the comparison between

“normal” neurons, and neurons that have been genetically

modified. Five genes have been knocked down along four

days, which leads to a total number of 47 experiments. In Ta-

ble 2, we give statistics regarding the classification accuracy

over the 47 experiments.

The accuracy is obtained as follows. We use a 100-fold

cross validation procedure to compute the average classifica-

tion rate. Four classifiers are compared: (a) bof+RF: each in-

stance Xi is modeled using bof and Random Forest [12] (RF)

is trained from the histograms of the bof, (b) bof+linSVM:

2http://cbcl.mit.edu/projects/cbcl/software-data-sets/
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similar to bof+RF but a linear SVM is used, (c) bof+rbfSVM:

similar to bof+linSVM but SVM is used with a Gaussian ker-

nel (1) where d stands for the Euclidean distance between

histograms of bof, (d) treeKL+rbfSVM: SVM is used with a

Gaussian kernel (1) where d stands for the proposed distance

(Eq. (2)). At each iteration of the cross validation, we test

sets of parameters for the kernel and the bof, and we chose

the best parameters.

Analysis of the experiments are given in Table 2. These

results show that the proposed method outperforms the bof-

based methods on average. This is not surprising, given that

tree structures are more efficient than k-means at modelling

point distributions in high dimensional space. We also no-

tice that the number of times for which the proposed method

outperforms is higher than the bof-based methods.

Regarding the biological analysis, the accuracy reaching

60% in average, we can conclude that a modification of the

genotype leads to a modification of the morphodynamics of

the neurons.

mean accuracy number of

outperforming times

bof+RF 0.58±0.21 11

bof+linSVM 0.57±0.21 7

bof+rbfSVM 0.59±0.19 8

treeKL+rbfSVM 0.62±0.19 21

Table 2. Results of the classification experiments. Four clas-

sifiers are compared (bof+RF, bof+linSVM, bof+rbfSVM,

and treeKL+rbfSVM). The mean accuracy is given as well

as the number of times where a given classifier outperforms

over all the 47 biological experiments.

5. CONCLUSION

We have proposed a new method for computing the distance

between two sets of points in a high dimensional space. Re-

garding applications, these distributions of points could be

key points in images, or words in documents. Our method

is based on the discretization of the feature space using un-

supervised trees. Once trees are built, we compute a tree-

based Kullback-Leibler distance by passing the points of one

set in the tree which is associated with another set. The major

advantages of the method are the absence of parameters, the

high dimensional tolerance, and its ability to mix continuous

features with categorical features.

Experimentally, we showed first that the proposed approx-

imation has a behavior consistent with the exact Kullback-

Leibler divergence on synthetic data, and we also demon-

strated on real-world data-sets that this method can outper-

form the baseline, i.e. bag-of-feature, in unsupervised learn-

ing as well as in supervised learning. We showed in particular

how our method can be applied to the characterization of ab-

normal neuron morphodynamics.
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