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ABSTRACT 
 
Near-infrared spectroscopy (NIRS)–based Brain-Computer 
Interface (BCI) was recently proposed to assess level of 
numerical cognition in subjects. However, existing feature 
extraction method was only proposed for low density 16 
channels NIRS-based BCI. This study investigates the 
performance of a high density 348 channels NIRS-based 
BCI on 8 healthy subjects while they solve mental 
arithmetic problems with two difficulty levels and the rest 
condition. A novel method of extracting effective features 
from high density single-trial NIRS data is proposed using 
common average reference spatial filtering and single-trial 
baseline reference. The performance of the proposed feature 
extraction method is presented using 5×5-fold cross-
validations on the single-trial NIRS data collected using 
mutual information-based feature selection and support 
vector machine classifier. The results yielded an overall 
average accuracy of 73% and 92% in classifying hard versus 
easy tasks and hard versus rest tasks respectively using the 
proposed method, compared to 46% and 62% respectively 
using existing method. The results demonstrated the 
effectiveness of using the proposed method in high density 
NIRS-based BCI for assessing numerical cognition.  
 

Index Terms— Brain-computer interface, near-infrared 
spectroscopy, mental arithmetic, feature extraction. 

1. INTRODUCTION 

Brain-Computer Interface (BCI) is a communication system 
that directly translates brain signals into commands for 
external devices [1]. Brain signals can be measured using 
electroencephalography (EEG), functional magnetic 
resonance imaging (fMRI), magnetoencephalography 
(MEG), positron emission tomography (PET), and invasive 
methods such as electrocorticogram (ECoG) and implanted 
electrodes [1]. Besides the widespread use of EEG-based 
BCI for left and right-hand motor imagery, the feasibility of 
using NIRS-based BCI has also been demonstrated [2], [3]. 

NIRS is a non-invasive optical neural imaging technique 
that measures concentration changes of oxyhemoglobin 
(HbO2) and deoxyhemoglobin (Hb) in the cerebral vessels 
by means of different absorption spectra in the near-infrared 

range [4]. Besides the use of non-invasive NIRS-based BCI 
for motor imagery, studies have also shown that other 
cognitive tasks, such as performing mental arithmetic, 
generally cause an increase of oxyhemoglobin associated 
with decreases of deoxyhemoglobin in the prefrontal cortex 
[5]. Recently, the feasibility of using a low density 16 
channels non-invasive NIRS-based BCI for assessing level 
of numerical cognition had been demonstrated in [6], of 
which has the potential application to investigate how to 
best teach mathematics in a classroom setting. 

The previous study in [6] collected NIRS data from 20 
healthy subjects in performing 3 difficulty levels of mental 
arithmetic tasks. A total of 75 trials of mental arithmetic 
tasks were collected from each subject, and these trials were 
evenly distributed into the 3 difficulty levels. The subjects 
performed two 1-digit additions for the easy tasks, 1-digit 
and 2-digits additions for the medium tasks, and two 2-digits 
additions for the hard tasks. However, the data were 
collected such that 5 trials of the same difficulty level 
formed a block, and a total of 15 randomized blocks were 
collected from each subjects. This experiment protocol was 
designed in blocks of 5 trials in consideration of the slow 
hemodynamic responses, but inherently included correlated 
single-trials in each block that comprised of tasks with same 
difficulty level. The previous study also proposed a simple 
method of extracting the features by taking the averaged 
changes in oxyhemoglobin and deoxyhemoglobin across 
12 s of NIRS data recorded for a single trial, and results 
were presented using 5 5-fold cross-validations on the 75 
single-trials of NIRS data collected.  

This paper presents a study of high density NIRS-based 
BCI for assessing the level of numerical cognition from 
performing mental arithmetic tasks. The motivations behind 
conducting this study compared to the previous study in [6] 
are: Firstly, to address the correlated single-trials of mental 
arithmetic tasks executed in blocks of 5 trials in the previous 
study. Secondly, to investigate the effectiveness of a high 
density NIRS-based BCI for assessing numerical cognition 
compared to low density NIRS-based BCI in the previous 
study. Thirdly, to investigate the effectiveness using the 
simple feature extraction method from the previous study in 
a high density NIRS-based BCI. Last but not least, to 
investigate and propose novel feature extraction methods to 
improve the performance for high density NIRS-based BCI. 
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2. METHOD 

This section describes the data collection using a high 
density NIRS-based BCI for assessing numerical cognition, 
the computation of the hemodynamic responses from the 
data, the feature extraction method used in the previous 
study [6], and the proposed feature extraction method.  

2.1. NIRS data collection 

The data was collected from 8 healthy subjects (3 females, 
mean age 28.6 8.38) recruited from staffs and students of 
the Brain Computer Interface laboratory in the Institute for 
Infocomm Research, A*STAR. All subjects were fully 
informed, and consented to participate in the study. 

The NIRS data was collected using the DYnamic Near-
Infrared Optical Tomography (DYNOT) Imaging System 
(NIRx Medizintechnik GmbH, Berlin, Germany) with two 
wavelengths (  = 760 & 830 nm) using 32 optodes that 
comprised co-located optical fibers, each serving as source 
and detector, on the prefrontal cortex of the subject’s head 
as shown in Fig. 1(a). The optical fibers were fixed on the 
prefrontal cortex using an open scaffolding structure with 
individually spring-loaded fibers to ensure stable optical 
contact. The setup measured 32 channels from 32 detectors 
for each source for each wavelength, and this dense fiber 
grid setup yielded a total of 1024 channels for each 
wavelength. However, not all channels contained useful 
data. Thus, only useful channels with source and detector 
distances between 1.5 to 3.5 cm measured using the Xensor 
digitizer were used, yielding a total of 348 data channels for 
each wavelength. 
 

 
(a) (b) 

Fig. 1. (a) Absorption changes are measured using a fiber grid with 32 co-
located source and detectors over the prefrontal cortex. (b) NIRS data 
collection setup whereby the numerical arithmetic question is presented to 
the subject on the screen and the answer is captured using a keyboard. 

2.2. Experimental Protocol 

During the data collection, the subjects were seated in a 
comfortable chair in a room with normal lighting. They 
were asked to relax before the data collection. They were 
also asked to minimize movement and to respond as quickly 
and as correctly as possible during data collection. 

The subjects underwent a total of 40 trials of mental 
arithmetic tasks that were evenly distributed into 2 difficulty 

levels of easy and hard. Each trial comprised of 3 numerical 
arithmetic questions from the same difficulty level. The 
subjects performed mental additions of 3-digits number with 
2-digits number without carryover for the easy tasks (eg. 
543 + 12), and additions of 4-digits numbers with 3-digits 
with at least 1 carry over (eg. 5432 + 612) for the hard tasks. 
At the start of each trial, a question was displayed for a 
maximum of 12 s. The next question will be displayed 
immediately if the subject responded within 12 s, or at the 
end of 12 s. A period of 20 s of rest condition was given 
between each trial. If all the 3 questions from a trial were 
correctly answered, then the trial was considered correct. 

2.3. NIRS data preprocessing 

Let the optical density for wavelength  from a source and 
detector channel c be denoted as ODc . First, the normalized 

change in optical density ODc  was computed by dividing 
each time sample with the mean of the optical signal 

acquired for the entire session. Next, ODc  was low-pass 
filtered using Chebychev type II filter with a cut-off 
frequency of 0.14 Hz and pass-band attenuation of 0.02 dB. 
Subsequently, linear-detrending was performed to remove 
the drift (low frequency bias) in the NIRS data due to 
reasons, such as subject movement, blood pressure 
variation, and instrumental instability [7]. After filtering and 
detrending, unity was added to bring the mean of the optical 
density to unity instead of zero. The optical density changes 
were represented as ODc  after these preprocessing steps. 

2.4. Computing hemodynamic responses 

The optical density changes ODc were expressed as a 
linear combination of the changes in oxyhemoglobin 

[HbO2]c and deoxyhemoglobin [Hb]c using the modified 
Beer-Lambert law (MBLL) [8], [9] given by 

 
2Hb HbO 2OD DPF Hb + HbOc c c

L , (1) 

where  is the wavelength-dependent extinction coefficient, 
L  is the path length from source to detector, and DPF  is 
the differential path-length. In this study, the values of  are 
obtained from [10], and DPF  = 6.3 and 6.0 are used for  = 
760 and  830 nm respectively. 

The optical density changes from the two wavelength 
were converted to changes in HbO2 and HB by solving [2] 
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2.5. Feature extraction method in previous study 

The feature extraction method in the previous study [6] was 
performed by taking the average [HBO2]c across a time 
segment T of NIRS data recorded for a single trial given by 

 2 2
0

1HbO HbO
T

c c
t

T
, (4) 

and the average of [HB]c can be similarly performed. The 
extracted feature vector for the ith trial was then formed 
using  

 2 21 1
HbO HbO Hb Hb

c c
i n n

x , (5) 

where 1 tn
ix , i=1,2,…,nt; nt denotes the total number of 

trials in the training data, and nc denotes the total number of 
channels for each wavelength. 

The feature matrix for the training data was then formed 
by 1 2 t

T

nX x x x .  

2.6. Proposed feature extraction method 

NIRS signals are often dominated by noise and artifacts of 
both physical and physiological origin, such as subject’s 
movement, heartbeat, respiration effects and other trends 
[11]. The filtering and detrending performed in section 2.3 
might not be sufficient to remove all the noise and artifacts. 
Therefore, the Common Average Reference (CAR) Spatial 
Filtering, commonly used in EEG-based BCI [12], is 
proposed to reduce noise and artifacts that are common in 
all the channels. The CAR method was performed on 

[HBO2]c using 

 2 2 2
1

1HbO HbO HbO
cn

c c c
jc

t t t
n

, (6) 

and CAR was similarly performed on [HB]c.  

After performing CAR, Single-trial Baseline Reference 
(SBR) is proposed to reduce noise and artifacts in each 
specific channel. The SBR method was performed on 

[HBO2]c using 

 
2

2 2 2
/2 0

2HbO HbO HbO
TT

c c c
T

t t
T

, (7) 

and SBR on [HB]c was similarly performed. The proposed 
SBR method first computes the baseline reference for a 
single trial from the average of the first half of the time 
segment T, then subtracts this baseline reference from the 
next half of the time segment for [HBO2]c and [HB]c  

respectively. The extracted feature vector for the ith trial is 
then formed using equation (4) whereby [HBO2]c and 

[HB]c are computed from equation (7). 

2.7. Feature selection and classification 

Feature selection was then performed to select 
discriminative features using the Mutual Information-based 
Best Individual Feature (MIBIF) algorithm [13] on the 
training data. In this study, the MIBIF algorithm was used to 
select 10 features, and the Support Vector Machine (SVM) 
was used to classify the selected features.  

3. EXPERIMENTAL RESULTS 

The performance of the NIRS-based BCI was then evaluated 
using 5 5-fold cross-validations in classifying the single-
trial high density NIRS data on easy versus hard (EvH) 
tasks, easy versus rest (EvR) tasks, and hard versus rest 
(HvR) tasks. The time segment T for classifying the EvH 
tasks was computed for each subject based on the average 
time taken to answer all the 3 arithmetic questions in a 
single trial. The time segment of a fixed T=14 s was used for 
classifying EvR and HvR tasks.  
 

 

Table 1. Experimental results on the number of correct trials answered by the subjects, 5 5-fold cross-validations accuracies and standard deviations in 
classifying the single-trial high density NIRS data on Easy versus Hard (EvH), Easy versus Rest (EvR), and Hard versus Rest (HvR) tasks using MIBIF to 
select 10 out of 686 extracted features and Support Vector Machine classifier. The classification accuracies are obtained on features extracted using: method 
in [6], single-trial baseline reference (SBR), and SBR after common average reference spatial filter (CAR-SBR) 

 
 
 

Correct
Subjects Trials

1 32 34.0 4.9 37.0 7.4 39.5 4.8 55.0 4.0 67.5 5.9 67.5 4.3 59.5 4.5 59.5 3.7 84.0 3.4
2 23 55.0 4.0 64.5 4.8 71.0 5.2 79.0 4.5 84.0 2.9 92.0 3.3 71.0 7.2 97.5 3.1 95.0 2.5
3 28 60.0 8.8 84.5 2.7 82.0 2.7 76.0 6.8 97.0 1.1 96.0 1.4 74.0 2.9 100 0.0 96.0 1.4
4 33 57.5 6.4 45.0 5.3 78.5 7.6 70.5 5.4 76.5 3.8 96.5 2.9 73.5 7.4 80.5 3.3 97.0 1.1
5 24 36.0 8.4 45.0 2.5 54.0 4.2 64.0 6.8 71.5 2.9 91.5 2.2 78.5 2.9 59.5 8.9 84.0 5.8
6 30 32.0 3.3 34.0 6.8 42.0 6.0 62.0 7.8 65.0 8.3 89.0 2.9 72.0 7.6 61.0 7.4 96.0 2.2
7 35 44.5 2.7 41.5 5.5 69.0 3.4 59.0 8.4 75.0 4.0 80.5 3.3 61.0 1.4 74.0 4.5 85.5 3.3
8 31 50.0 7.7 37.0 8.0 61.5 6.8 89.5 2.1 86.5 2.2 100 0.0 91.5 2.2 83.5 5.2 100 0.0

Average 46.1 ± 5.8 48.6 ± 5.4 62.2 ± 5.1 69.4 ± 5.7 77.9 ± 3.9 89.1 ± 2.5 72.6 ± 4.5 76.9 ± 4.5 92.2 ± 2.4

Method in [6]
EvH EvR HvR EvH EvR HvR

SBR method CAR-SBR method
EvH EvR HvR
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Table 1 shows the number of trials whereby all 3 
questions were correctly answered by the subjects, and the 
classification accuracies obtained on the features extracted 
using: method in [6], SBR method described in section 2.6, 
and proposed CAR-SBR method described in section 2.6. 
The results showed that the classification of the EvH tasks 
using the feature extraction method in [6] yielded an 
averaged accuracy of 46.1% across the 8 subjects. This 
random chance level accuracy is in contrast with the result 
of 69.8% presented in [6]. The reasons are twofold: Firstly, 
the study in [6] was performed on 16 channel low density 
NIRS-based BCI. Thus this showed that the feature 
extraction method in [6] was not effective in high density 
NIRS-based BCI for mental arithmetic task. Secondly, the 
result in [6] was better because the previous experiment was 
performed in a block of 5 trials on the same difficulty level. 
Thus this showed that the NIRS data from trials in the same 
block in [6] were correlated. 

The results in Table 1 also showed that the classification 
of EvH tasks on features extracted using the SBR and CAR-
SBR methods yielded significantly improved averaged 
accuracies of 69.4% and 72.6% compared to 46.1% using 
the method in [6] (p=0.0002, 0.0006 using paired t-test 
respectively). Although the results on the CAR-SBR method 
was not significantly different from the SBR method 
(p=0.223), the former yielded an improvement of 3.3% over 
the latter. Furthermore, the results on the classification of 
the HvR tasks and the EvR tasks on features extracted using 
the proposed CAR-SBR method showed significantly 
improved averaged accuracies of 92.2% and 76.9% 
compared to 62.2% and 48.6% respectively using the 
method in [6] (p=0.0006, 0.0001). The results on classifying 
the HvR tasks was also significantly better than classifying 
the EvR tasks (p=0.0149). This showed that the NIRS data 
of the subjects performing harder mental arithmetic tasks are 
more separated from the NIRS data at rest condition 
compared to the easier mental arithmetic tasks. In addition, 
the results also showed that the accuracies of classifying the 
EvH and HvR tasks using the proposed CAR-SBR method 
were not correlated to the number of correctly answered 
trials by the subjects (r=-0.30, -0.03). 

4. CONCLUSIONS 

This paper presents a novel method of extracting effective 
features from high density NIRS-based BCI using common 
average reference spatial filtering and single-trial baseline 
reference. A study was performed to collect a dense 348 
channels of NIRS data for each wavelength from the 
prefrontal cortex of 8 subjects in performing two difficulty 
levels of mental arithmetic and the rest condition.  

The results showed that existing method for low density 
NIRS-based BCI was not effective in the high density 
NIRS-based BCI, and the results presented in the previous 
study may be a result of correlated trials executed in a block. 
The results in this study showed that the proposed method 

yielded significantly improved classification accuracies 
compared to existing method. Furthermore, the results also 
revealed no correlation between the classification accuracies 
and the number of correctly answered trials. Hence the 
results demonstrated the effectiveness of using the proposed 
method in high density NIRS-based BCI for mental 
arithmetic task, as well as the application of such a BCI to 
provide a feedback on the level of numerical cognition. 
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