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ABSTRACT

Protein subcellular localization is an essential step to annotate
proteins and to design drugs. This paper proposes a functional-
domain based method—GOASVM—by making full use of Gene
Ontology Annotation (GOA) database to predict the subcellular lo-
cations of proteins. GOASVM uses the accession number (AC) of a
query protein and the accession numbers (ACs) of homologous pro-
teins returned from PSI-BLAST as the query strings to search against
the GOA database. The occurrences of a set of predefined GO terms
are used to construct the GO vectors for classification by support
vector machines (SVMs). The paper investigated two different ap-
proaches to constructing the GO vectors. Experimental results sug-
gest that using the ACs of homologous proteins as the query strings
can achieve an accuracy of 94.68%, which is significantly higher
than all published results based on the same dataset. As a user-
friendly web-server, GOASVM is freely accessible to the public at
http://bioinfo.eie.polyu.edu.hk/mGoaSvmServer/GOASVM.html.

Index Terms— Protein subcellular localization; Gene Ontology
Annotation; Gene Ontology; Support vector machines; GO terms.

1. INTRODUCTION
Determination of protein subcellular locations is indispensable for
the annotation of protein functions, and it plays an important role in
drug design. However, in the post-genomic era, the number of newly
discovered proteins has been growing exponentially, making subcel-
lular localization prediction by purely laboratory tests prohibitively
expensive. Therefore, computational methods are developed to help
biologists in selecting target proteins and designing related experi-
ments. Recent years have witnessed impressive progress in dealing
with this challenge. Localization methods can be generally divided
into the following four categories.

(1) Sorting-signals based methods. This group predicts the lo-
calization via the recognition of N-terminal sorting signals in amino
acid sequences [1]. Nakai and Kanehisa in 1991 [2] proposed the
earliest predictor—PSORT—using sorting signals. In 2006, they ex-
tended it to WoLF PSORT [3]. However, this group of methods
could only deal with proteins that contain signal sequences. For ex-
ample, the popular TargetP [4, 5] could only detect three locations:
chloroplast, mitochondria and secretory pathway (extracellular).

(2) Composition-based methods. This category focuses on the
relationship between subcellular locations and the information em-
bedded in the amino acid sequences such as amino-acid composi-
tions (AA) [6], amino-acid pair compositions (PairAA) [6], gapped
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amino-acid pair compositions (GapAA) [7], and pseudo amino-acid
composition (PseAA) [8]. This kind of methods is easy to imple-
ment, but usually have poorer performance than other methods.

(3) Homology-based methods. These methods assume that ho-
mologous proteins are more likely to reside in the same subcel-
lular location. Their performance is generally better than that of
composition-based method as long as the homologs of the query se-
quences can be found in protein databases [9]. Recently, Mak et
al. [10] proposed a homology-based predictor called PairProSVM.
The predictor applies profile alignment to detect weak similarity be-
tween protein sequences. Homology based methods can detect as
many locations as appeared in the dataset and can achieve com-
paratively high accuracy. But when the dataset contains sequences
with low sequence similarity or the numbers of samples in different
classes are imbalanced, the performance is still poor.

(4) Functional-domain based methods. These approaches
make use of the correlation between the function of a protein and
its subcellular location. In [11], a sequence is mapped into the GO
database so that a feature vector can be formed by determining which
GO terms the sequence holds. Moreover, by exploiting the domain
knowledge in subcellular localization, Huang et al. [12] proposed
a searching algorithm called GOmining to discover the informative
GO terms and classify them into instructive GO terms and essen-
tial GO terms for leveraging the information in the GO database.
More recently, Xiao et al. [13] proposed a predictor called iLoc-
Virus that uses the information in the GO annotation database to
predict the subcellular localizations of virus proteins. Although the
functional-domain based methods can often outperform sequence-
based methods, they are only applicable to sequences that possess
the required information, because so far not all sequences are func-
tionally annotated.

This paper proposes a functional-domain based method called
GOASVM, which is based on protein homology, gene ontology an-
notations, and support vector machines. Unlike our previous work
[14] where homolog-based and functional-domain based predictors
are fused, GOASVM uses PSI-BLAST [15] to find more relevan-
t accession numbers (ACs)1 to search against the GO annotation
(GOA) database. This strategy leads to more GO terms and GO
vectors for classification and hence improves classification perfor-
mance. Sections 2 and 3 detail the GOA and the GO vector con-
struction methods. Section 4 reports the performance of GOASVM
on a popular benchmark dataset and show that it outperforms other
functional-domain based predictors on the same dataset.

1Accession numbers are unique identifiers given to DNA or protein se-
quences. They are mainly used as foreign keys for referencing sequences in
sequence databases.
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2. GENE ONTOLOGY ANNOTATION DATABASE

2.1. Gene Ontology

Gene Ontology (GO)2 is a set of standardized vocabularies that
annotate the function of genes and gene products across different
species. The term ‘ontology’ originally refers to a systematic ac-
count of existence. In the GO database, the annotations of gene
products are organized in three related ontologies: cellular com-
ponents, biological processes, and molecular functions. A cellular
component is a component of a cell. It is a part of some larger
objects such as an anatomical structure or a gene product group. A
biological process is a sequence of events achieved by one or more
ordered assemblies of molecular functions. A molecular function
is achieved by activities that can be performed by individual or by
assembled complexes of gene products at the molecular level.

2.2. Gene Ontology Annotation Database

As a result of the GO Consortium annotation effort, the Gene On-
tology Annotation (GOA) database3 has become a large and com-
prehensive resource for proteomics research [16]. The database pro-
vides structured annotations to non-redundant proteins from many
species in UniProt Knowledgebase (UniProtKB) [17] using stan-
dardized GO vocabularies through a combination of electronic and
manual techniques. It also includes a series of cross-references to
other databases. Thus, the systematic integration of GO annotations
and UniProtKB database can be exploited for subcellular localiza-
tion. Specifically, given the accession number of a protein, a set of
GO terms can be retrieved from the GOA database file.4

3. GOASVM METHOD

3.1. Retrieval of GO Terms

For proteins with known accession numbers (ACs), we directly re-
trieved the GO terms by using their ACs as the searching keys to
search against the GOA database. For proteins without an AC, we
used PSI-BLAST [15] to find their homologs and used their ACs
as the searching keys. Specifically, given a query sequence, n ho-
mologs and n ACs will be found. This means that each sequence
will produce either one set of GO terms from the true AC or n set of
GO terms from the ACs of n homologs. In this work, we considered
the top homolog (i.e., n = 1) only because it is the most relevant
and its AC is more likely to bring us relevant information.

3.2. Construction of GO Vectors

Given a dataset, we used the procedure described in Section 3.1 to
retrieve the GO terms of all of its proteins. Then, we determined the
number of distinct GO terms corresponding to the dataset. Suppose
T distinct GO terms were found; these GO terms form a GO Eu-
clidean space with T dimensions. For each sequence in the dataset,
we constructed a GO vector by matching its GO terms to all of the
T GO terms. We have investigated two approaches to determine the
elements of the GO vectors.

1. 1-0 value. In this approach, each of the T GO terms rep-
resents one canonical basis of a Euclidean space, and a protein se-
quence is represented by a point with coordinates equal to either 0

2http://www.geneontology.org
3http://www.ebi.ac.uk/GOA
4ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/

or 1. Specifically, the GO vector of the i-th protein is denoted as:

pi =

⎡
⎢⎢⎢⎢⎢⎢⎣

ai,1

...
ai,j

...
ai,T

⎤
⎥⎥⎥⎥⎥⎥⎦

where ai,j =

{
1 , GO hit
0 , otherwise

(1)

where ‘GO hit’ means that the j-th GO term appears in the GOA
search result using the AC of the i-th protein as the searching key.

2. Term-Frequency (TF). This approach is similar to the 1-0
value approach in that a protein is represented by a point in a Eu-
clidean space. However, unlike the 1-0 approach, it uses the number
of occurrences of individual GO terms as the coordinates. Specifi-
cally, the GO vector pi of the i-th protein is defined as:

pi =

⎡
⎢⎢⎢⎢⎢⎢⎣

bi,1
...

bi,j
...

bi,T

⎤
⎥⎥⎥⎥⎥⎥⎦

where bi,j =

{
fi,j , GO hit
0 , otherwise

(2)

where fi,j is the number of occurrences of the j-th GO term (term-
frequency) in the i-th protein sequence. The rationale is that the
term-frequencies may also contain important information for classi-
fication and therefore should not be quantized to either 0 or 1. Note
that bi,j’s are analogous to the term-frequencies commonly used in
document retrieval. We have also tried forming the GO vectors by
using inverse-sequence frequency (ISF) and TF-ISF [14], but they
are inferior to TF.

3.3. Multiclass SVM Classification

GO vectors are used for training one-vs-rest SVMs. Specifically, for
an M -class problem (here M is the number of subcellular locations),
M independent SVM are trained, one for each class. Denote the GO
vector created by using the true AC of the i-th query protein as qi,0

and the GO vectors created by using the n homologous ACs as qi,j ,
j = 1, . . . , n. Then, the score of the m-th SVM given the i-th query
protein is

sm(qi) =
n∑

j=0

wj

( ∑
r∈Sm

αm,rym,rK(pr,qi,j) + bm

)
(3)

where Sm is the set of support vector indexes corresponding to the
m-th SVM, ym,r ∈ {−1,+1} are the class labels, αm,r are the La-
grange multipliers, K(·, ·) is a kernel function, and wj’s are fusion
weights such that

∑n
j=0 wj = 1. The predicted class of the test

sequence is given by

m∗ =
M

arg max
m=1

sm(qi). (4)

Note that pr’s in Eq. 3 represents the GO training vectors, which
may include the GO vectors created by using the true AC of the
training sequences or their homologous ACs.

If the true ACs are not available, then only the ACs of the
homologous sequences can be used for training the SVM and for
scoring. In that case, qi,0 does not exist and w0 = 0 in Eq. 3;
moreover, pr represents the GO training vectors created by using
the homologous ACs only.
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GO Vector Construction Method OMCC WAMCC ACC

1-0 value 0.9252 0.9189 92.98%

TF 0.9419 0.9379 94.55%
Table 1. Performance of different GO-vector construction methods
based on leave-one-out cross validation on the training set.

In this work, linear kernels and the top homolog were used, i.e.,
K(pr,qi,j) = 〈pr,qi,j〉 and n = 1 in Eq. 3. Therefore, when ACs
are not available, w0 = 0 and w1 = 1. When ACs are available,
w0 = 1 and w1 = 0.

4. EXPERIMENTS AND RESULTS

4.1. Dataset and Performance Measures

The performance of GOASVM was evaluated on Chou’s dataset
[18], which was created from Swiss-Prot 48.2. The dataset com-
prises 4150 proteins (2423 in the training set and 1727 in the inde-
pendent test set) with 16 classes. The sequence similarity is cut off
at 25%. We used the GOA database (released on 08-Mar-2011) as
the retrieval database. In the experiments, 5450 and 5430 distinct
GO terms were found, respectively, by using only ACs and only the
ACs of homologous sequences as the searching keys.

Leave-one-out cross validation (LOOCV) and independent tests
were used for performance evaluation. The performance measures
include the overall accuracy (ACC), overall Mathew’s correlation
coefficient (OMCC) [10] and weighted average Mathew’s correla-
tion coefficient (WAMCC) [10]. The latter two have the advantage
of avoiding the performance to be dominated by the majority classes.

4.2. Performance of GOASVM Predictor

Table 1 shows the performance of the GO-vector construction
methods. Linear SVMs were used in both cases, and the penal-
ty factor was set to 0.1. The results show that term-frequency (TF)
performs almost 2% better than 1-0 value, which demonstrates that
the frequencies of occurrences of GO terms could also provide
information for subcellular locations. The results are biologically
relevant because proteins of the same subcellular localization are
expected to have a similar number of occurrences of the same GO
term. In this regard, the 1-0 value approach is inferior because it
quantizes the number of occurrences of a GO term to 0 or 1.

Table 2 shows the performance of different features and different
SVM classifiers. The penalty factor for training the SVMs was set
to 0.1 for both linear SVMs and RBF-SVMs. For RBF-SVMs,
the kernel parameter was set to 1. The maximum gap length of
GapAA [7] is 48 (the minimum length of all the sequences is 50).
As AA, PairAA and PseAA produce low-dimensional feature vec-
tors, the performance achieved by RBF-SVMs is better than that of
the linear SVMs. So we just report the performance of RBF-SVMs
here. As can be seen, amino-acid composition and its variant are
not good features for subcellular localization. The highest accuracy
is only 45.56%. Moreover, the performance of the homology-based
method (last 2nd row) is also poor (only 45.23%). On the other
hand, our proposed GOASVM can achieve a significantly better per-
formance (94.68%), which is more than 40% (absolute) better than
the composition-based and homology-based methods. This suggests
that GO annotations can provide significantly richer information
pertaining to protein subcellular localization than AA compositions
and profile alignment.

Table 3 compares the performance of GOASVM against three
state-of-the-art GO-based methods. As Euk-OET-PLoc [18] could
not produce valid GO vectors for some proteins in Chou’s dataset,
it uses PseAA as a backup. ProLoc-GO [12] uses either the ACs
of proteins as searching keys or uses the ACs of homologs returned
from BLAST [19] as searching keys. Our proposed method can al-
so use either ACs or sequences as inputs. Unlike Euk-OET-PLoc
and ProLoc-GO, GOASVM uses PSI-BLAST to find the top-ranked
homolog. Table 3 shows that for ProLoc-GO, using ACs as input
performs better than using sequences (ACs of homologs) as input.
However, the results for GOASVM are not conclusive in this re-
gard because under LOOCV, using ACs as input performs better
than using sequences, but the situation is opposite under indepen-
dent tests. Table 3 also shows that no matter using ACs as input or
sequences as input, GOASVM performs better than Euk-OET-PLoc
and ProLoc-GO.

4.3. Performance of GOASVM Using Old GOA Database

The newer the version of GOA database, the more annotation in-
formation it contains. To investigate how the updated information
affects the performance of GOASVM, we performed experiments
using an earlier version (published in Oct. 2005) of the GOA
database and compared the results with Euk-OET-PLoc [18]. Com-
parison between the last and second last rows of Table 4 reveals
that using newer versions of the GOA database can achieve better
performance than using older versions. This suggests that anno-
tation information is very important to the prediction. The results
also show that GOASVM significantly outperforms Euk-OET-PLoc,
suggesting that the GO vector construction method and classifier
(term-frequency and SVM) in GOASVM are superior to the those
used in Euk-OET-PLoc (1-0 value and K-NN).

5. CONCLUSIONS

This paper proposes a functional-domain based method – GOASVM
– to predict subcellular locations of proteins. The accession num-
bers (ACs) of query proteins are used as keys to search against
the GOA database to find the GO terms. For proteins without
an AC, PSI-BLAST is used to find their homologs and the ACs
of these homologs are used as the searching keys. Then, GO
terms are used to construct the GO vectors, which are subse-
quently classified by SVMs. Results on a recent dataset demon-
strate that GOASVM outperforms the state-of-the-art GO-based
methods, homology-based method, and methods based on amino
acid compositions. It was also found that the frequency of oc-
currences of GO terms provides useful information for classifi-
cation. For readers’ convenience, a user-friendly web-server for
GOASVM was designed and it is freely accessible to the public at
http://bioinfo.eie.polyu.edu.hk/mGoaSvmServer/GOASVM.html.
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