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ABSTRACT

Independent Component Analysis (ICA) has been successfully used
to study complex-valued functional magnetic resonance imaging
(fMRI) data in a number of block-design paradigms. In this paper,
we demonstrate the first successful application of group ICA to
complex-valued fMRI data of an event-related paradigm. We show
that networks associated with event-related responses as well as
intrinsic fluctuations of hemodymamic activity can be extracted for
data collected during an auditory oddball paradigm. The intrinsic
networks are of particular interest due to their potential to study
cognitive function and mental illness, including schizophrenia.

Additionally, we show that analysis of fMRI data in its complex
form can increase the sensitivity in the detection of activated brain
regions when compared to magnitude-only applications. This pro-
vides a powerful motivation for utilizing both the phase and mag-
nitude data. However, the unknown and noisy nature of the phase
requires the development of an appropriate approach for its visual-
ization. We introduce a novel fMRI phase-based visualization (FPV)
technique that can be used to identify activated voxels in higher num-
bers than typical visualization techniques that only use the magni-
tude data.

Index Terms— Complex-valued fMRI, Group ICA, Visualiza-
tion, Phase, Event-related

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a technique that
provides the opportunity to study brain function non-invasively and
is a powerful tool utilized in both research and clinical areas since
the early 90s.

FMRI data are natively acquired as complex-valued spatio-
temporal images; but, usually only the magnitude images are used
for analysis. However, growing evidence from our group and others
[1, 2] suggest that the phase data carries information about the blood
oxygen level dependent (BOLD) signal above and beyond what is
preserved in the magnitude data. One particular powerful motivation
to study both the magnitude and the phase of the fMRI data is the
possibility of increasing the sensitivity in the detection of activated
brain regions.

Both model-based approaches, such as general linear model
(GLM), and data-driven approaches, such as independent compo-
nent analysis (ICA), can be used for studying complex-valued fMRI
data. ICA, in particular, has shown substantial promise for studying
the magnitude and complex-valued fMRI data [3, 4, 5]. By using a
simple generative model based on linear mixing, ICA can minimize
the constraints imposed on the temporal–or the spatial–dimension of
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the fMRI data, and hence provides valuable new insights, especially
when studying paradigms for which reliable models of brain activity
are not available.

Complex-valued group ICA of fMRI data has been used primar-
ily to extract signals from brain regions that show BOLD changes
in response to a block-design paradigm. More recently there has
been increased interest in networks associated with event-related re-
sponses as well as intrinsic fluctuations of hemodymamic activity.
In this paper, we introduce the first successful application (to the
best of our knowledge) of group ICA to an event-related complex-
valued fMRI data. We show that not only we can extract intrin-
sic networks (e.g., default mode network) but that by including the
phase information we can enhance the detection of activated voxels.
These voxels are not detectable by real-valued algorithms operating
on magnitude-only data. This increase in sensitivity could help in
the discrimination of control and patient subjects in clinical studies
and enhance the studying of cognitive function and mental illness,
including schizophrenia.

Exploiting this increase in sensitivity provided by the phase re-
quires new complex-valued preprocessing and visualization tech-
niques for fMRI data. We have developed a framework [6] that al-
lows us to incorporate the phase information in every step of a group
ICA of fMRI. In [6], we introduced a visualization method that takes
into account both the phase and magnitude to identify activated vox-
els, but a method to solely visualize the phase and hence represent
its information content has been an open problem. The phase im-
ages are usually not used, because their noisy and unfamiliar nature
poses a challenge [3]. In here, we introduce the first method that uses
the phase of the estimated independent components (ICs) to identify
activated brain regions and display their actual unwrapped phase val-
ues. This novel fMRl phase-based visualization (FPV) technique is
shown to be critical in analyzing complex-valued fMRI ICA results,
since using only the magnitude of the estimated ICs for visualization
does not fully capitalize on the benefits of using the phase.

In Section 2, we provide background information about complex-
valued ICA. In Section 3, we describe the FPV technique. In Section
4, we present the results obtained from applying group ICA to ac-
tual complex event-related fMRI data. We also show how the FPV
method can enhance the detection of voxels with significant suscep-
tibility changes located in low magnitude areas.

2. BACKGROUND

2.1. ICA of fMRI Data

We can form a matrix X ∈ C
T×V using the complex-valued fMRI

data such that the ith row is formed by flattening the volume im-
age data of V voxels, at time instant l, into a row, and the rows
are indexed as a function of time, l = 1, . . . , T . In spatial ICA

2225978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



of fMRI data, we assume a simple linear mixing model such that
X = AS, and determine both the activation maps and the corre-
sponding waveforms, i.e., both S and A, typically without constrain-
ing either. The additional assumption we impose is that the rows of
matrix S represent observations of statistically independent random
variables. ICA achieves demixing by estimating a weight matrix W
such that U = WX = PΛS. Here, P, a permutation matrix,
represents the permutation ambiguity and Λ, a diagonal matrix, rep-
resents the scaling ambiguity of ICA, which has a magnitude and
phase term in the complex-valued implementation of ICA. In [6], we
introduce a phase correction algorithm that alleviates the ambiguity
due to the phase term so that group analysis becomes possible.

There are several complex ICA algorithms that can be used to
analyze fMRI data [7]. Some well-known complex ICA algorithms,
such as the complex fastICA algorithm and circular infomax algo-
rithm, use a fixed nonlinearity function to implicitly generate the
higher-order statistics required [5]. As we know, for the ICA al-
gorithms based on mutual information minimization (equivalently
maximum likelihood and maximization of negentropy), the algo-
rithms are optimal when the form of the nonlinear function matches
the form of the probability density functions of the sources. Hence,
the feature of fixing the nonlinearity limits the performance of source
separation. Since very little is known about the nature of fMRI
sources, it is desirable to use an algorithm that is more flexible in
adapting to a wide range of source distributions, e.g., the adaptive
complex maximization of non-Gaussianity (A-CMN) and the com-
plex entropy bound minimization (complex EBM) algorithms. In
this paper, we implemented the complex EBM [8] since it has shown
superior performance for analysis of complex-valued fMRI data [9].
EBM uses a maximum entropy density model and it can approximate
a wide range of super- or sub-Gaussian, symmetrical or asymmetri-
cal distributions.

3. METHODS

In this section, we introduce the novel fMRI phase-based visualiza-
tion method. The FPV method identifies voxels that have both good
quality (e.g., non-noisy) and have similar phase values as the vox-
els that are identified by a Mahalanobis distance score. We provide
details about the three main concepts behind the FPV method: the
Mahalanobis distance score (Section 3.1), phase quality masks (Sec-
tion 3.2) and phase unwrapping (Section 3.3). The FPV method is
summarized in Section 3.4.

3.1. Z-score and Mahalanobis Distance Thresholding

In studies of complex-valued fMRI data the results are usually pre-
sented using only the magnitude information, even though the phase
information is available at no cost. For example, estimated fMRI
sources in spatial ICA are usually presented using Z-score thresh-
olded magnitude (Zr) images (i.e., slices) to highlight the activated
voxels. The “r” in (Zr) stands for real-valued representation, as the
metric completely ignores the phase information. The Zr values for
each of the voxels (l) of the magnitude images of the kth source are
calculated by

Zrk,l =
‖ŝk,l‖ − η̂k

σ̂k
(1)

where η̂k and σ̂k are the mean and standard deviation, respectively,
of the magnitude images of the estimated kth source (ŝk).

We can, however define a Z-score that takes the complex (or
bivariate) nature of the data into account by simply using the Ma-
halanobis distance, which we denote by Zc, where the subscript c
refers to the complex representation, i.e., one that simultaneously
takes the real and imaginary parts into account. It is calculated for
all complex-valued voxels (l) of the estimated sources as

Zck,l =

√
[ŝk,l − μ̂k]

TĈ
−1

k [ŝk,l − μ̂k] (2)

where ŝk,l = [ŝk,l,re , ŝk,l,im]T is the k estimated source and μ̂k

and Ĉk are the corresponding estimated spatial image mean vector
and covariance matrix over all the voxels.

Both, the Zr and the Zc, scores can be used to visualize the re-
sults of complex-valued ICA of fMRI data. The Zc score is equal to
the absolute value of the Zr score when the data is univariate. Voxels
of interest are identified if they have a value higher than a specified
threshold for the values obtained using (1) and (2). We demonstrate
that use of Zc increases the sensitivity in detecting activated voxels
when compared to the use of the Zr score in Section 4.

The Zc score is used in the FPV method to help identify the
range of phase values of highly activated voxels. Typical thresholds
(z) for the Zc images in the FPV method have values of 6 or higher,
i.e., significance level of P < 10−10.

3.2. Quality Maps and Masks

Quality maps are arrays of values that define the quality or goodness
of each voxel in a given phase image. We use the phase derivative
variance (PDV) map in our work, based on the quality of results ob-
tained in our study when comparing this map to others, and the fact
that the PDV map is considered to be extremely robust in identify-
ing noisy areas in phase images. The PDV map is calculated as a
root-mean square measure of the variances of the partial derivatives
in the x- and y-directions of the phase image, such that high values
represent low quality. In the PDV map, the (m,n)th voxel value is
computed as

zm,n = · · · (3)

⎛
⎝

√√√√ (k−1)/2∑
i,j=−(k−1)/2

(Δx
i,j − Δ̃x

m,n)
2 +

√√√√ (k−1)/2∑
i,j=−(k−1)/2

(Δy
i,j − Δ̃y

m,n)2

⎞
⎠

q2

where for each sum the indexes (i, j) range over a window of size
q × q centered at the voxel (m,n). Typical values for q are 3, 5
or 7. The terms Δx

i,j and Δy
i,j are the partial derivatives—wrapped

phase differences—of the phase. The terms Δ̃x
m,n and Δ̃y

m,n are the
averages of these partial derivatives in the used window.

Quality maps are used to develop binary quality masks, which
assign a “0” to unreliable voxesls that should not be further ana-
lyzed. These quality masks are obtained by thresholding the quality
maps. Simple thresholding values can easily be acquired by visually
inspecting the quality values. Voxels with very small values—0.2
radians in our implementation—in the PDV map correspond to ar-
eas of low phase gradients and hence, can usually be considered as
having good quality. Additionally, we can implement the automatic
threshold selection method described in [10, p.85], and obtain simi-
lar threshold values.

3.3. Phase Unwrapping

The actual unwrapped phase of any complex signal represents a ro-
tation, with direction and radial length. However, given any complex
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data, the phase can only be computed as modulo 2π. If phase maps
are to convey any useful information, the exact rotation of the signal
in one voxel with respect to that in another must be known. Any
error made in assigning a phase value to a voxel will result in an
erroneous quantification of the underlying physics [1].

We develop a 3D algorithm similar to the 2D quality-guided
path following phase unwrapping algorithm in Section 4.2.1 of [10].
First, a 3D PDV quality map is computed by extending (3) to a third
dimension. The algorithm starts by unwrapping the phase in the lo-
cation with the best quality in the fMRI data and then it starts to grow
and unwrap the surrounding regions guided by the quality map.

3.4. FMRI Phase-Based Visualization

The steps of the FPV method are summarized in Algorithm 1. The
algorithm computes two binary masks and then multiplies them to
identify the voxels that are activated and should not be eliminated.
The first mask is a phase quality mask. The second one is a mask
that identifies the voxels with phase values similar to highly activated
voxels as identified by the Zc technique.

FPV assumes that a complex-valued ICA algorithm has been
implemented to extract ICs. The input is the magnitude and phase
images of a given IC. Typical values for the two thresholds in the
algorithm are p = 0.2 and z = 6, as described in Sections 3.1 and
3.2.

Algorithm 1 – FPV: For a given IC

1: Input all the 2D fMRI slices v
Quality mask steps:

2: Calculate PDV map (Pv) using (3);
3: Calculate PDV mask: Bv = Pv < p;

Mahalanobis + phase mask steps:
4: Compute Zc values using (2);
5: Identify the range of phase values ([r1, r2]) of all the voxels

with: Zc > z
6: Compute binary mask (Kv) with all the voxels with phase values

in the identified range: r1 < r < r2;
FPV mask:

7: Calculate FPV mask: Qv = Kv ◦Bv;
8: Eliminate voxels outside the Qv mask;
9: Optional: Unwrap the phase of the surviving voxels as described

in Section 3.3;

4. RESULTS

4.1. fMRI Data

We analyzed data collected from thirty subjects performing an AOD
task. An MRI compatible fiber-optic response device (Lightwave
Medical, Vancouver, B.C.) was used to acquire behavioral responses
for both tasks. The stimulus paradigm data acquisition techniques
and previously found stimulus-related activation are described in
more detail in [11].

The complex-valued data was first de-noised by using the multi-
subject quality map phase de-noising method we have introduced
in [6]. Additionally, we use PCA to whiten and reduce the dimen-
sionality of the complex-valued fMRI data prior to applying the
ICA algorithm. The number of effective principal components for
this dataset is selected as 30, using the minimum description length
(MDL) criterion for complex valued data as in [4].

The complex EBM group ICA was applied to the fMRI data
using the GIFT toolbox [12]. Since ICA algorithms are of iterative
type, we use ICASSO [13] in GIFT to check the consistency of the
algorithm and improve the robustness of the estimation results.

The entire process was repeated with the magnitude of the fMRI
data for comparison.

4.2. Complex-valued ICA of Event-Relatated Task
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Fig. 1. Group level Zr , Zc and FPV images of three ICs extracted
from the AOD data by the complex EBM ICA algorithm. The FPV
images show the unwrapped phase values in radians of the identified
activated voxels. Only 6 of the 46 fMRI slices are shown.

In this section, we show the results of applying the complex
EBM group ICA algorithm to the AOD data. Three ICs of inter-
est were manually selected from the thirty estimated. The three ICs
are as follows: 1. Temporal lobe (TL); 2. DMN; 3. Right parietal
(RP). The TL IC is task-related and the other two represent intrin-
sic networks. Other ICs extracted by the complex-EBM algorithm
but not shown here due to lack of space contained activated voxels
related to the following networks: Left parietal, occipital, anterior
DMN, motor, cerebellum and frontal parietal.

In Fig. 1, we show the Zr , Zc and FPV images of three selected
ICs. Starting from the top left slice and then moving right and down,
we can see the fMRI slices as if were going from the top of the
head towards the neck. The FPV images show the unwrapped phase
values in radians of the identified activated voxels. As discussed in
Section 3.1, the Zr and Zc can be used for visualization and are
compared here with the FPV method. The Zr and Zc images were
thresholded at the same significance level (P < 0.05).

The FPV phase images can provide more information about the
underlying physics. For example, we can increase our ability to
detect voxels with significant susceptibility changes located in low
magnitude areas. It can be seen in Fig. 1 that both the Zc and FPV
visualization algorithms identify more voxels in all the ICs, in par-
ticular the new FPV method. The phase information increases the
sensitivity in the detection of the activated areas of each of the ICs
without affecting specificity.

To quantify the performance of all the visualization techniques,
we generated masks of the regions of the three ICs using the WFU
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Pickatlas toolbox (http:// www.nitrc.org /projects /wfupickatlas).
This toolbox allows users to create masks by selecting both Brod-
mann areas (BAs) and functional areas in the brain. The masks and
their corresponding regions that are activated during AOD task [11]
are shown as follows: 1. DMN: BAs 7, 10, 39, precuneus and
posterior cingulate; 2. Parietal lobe: BAs 5, 7, 39, 40, postcentral
gyrous, supramarginal gyrus, posterior cingulate and precuneus; 3.
Temporal lobe: BAs 20, 21, 22, 38, amygdala, and parahippocampa
gyrus. The generated masks were used to calculate the number of
voxels in the ICs obtained from the three visualization techniques
that were located in the expected brain regions (see Table 1).

Visualization method

Independent Zr Zc FPV
Component

Temporal Lobe 1792 2683 2691

DMN 1682 2784 3413

Right Parietal 917 1426 1895

Table 1. Identified number of voxels by the different visualiza-
tion methods when applied to three of the extracted ICs using group
complex-EBM ICA algorithm.

4.3. Comparison of Complex and Magnitude-only ICA Appli-
cation on Event-Relatated Task

To test the difference in performance of both the complex-valued
and magnitude-only ICA results, we implemented parametric meth-
ods for thresholding the Zc and Zr sample values. Using the thresh-
olded images we calculated their respective receiver operating char-
acteristic (ROC) curves (as described in [6]). Here, we show the
ROC curves results for the DMN component. We use the Zr and the
Zc images from the complex-valued results and only the Zr image
from the magnitude-only analysis results.

The probability of true positives (TP) in the ROC curves indi-
cates the number of voxels that survive the threshold (at each point
in the curve) and that fall inside the WFU Pickatlas DMN mask.
Similarly, the probability of false positive (FP) indicates the num-
ber of voxels that pass the various thresholds and that fall outside
the DMN mask. Comparison of the ROC curves for the different
thresholding methods is done by calculating their respective area un-
der the curve (AUC). Better performance, as measured by the higher
AUC, indicates overall higher sensitivity and specificity at the vari-
ous thresholds used in the ROC curves.

In Fig. 2 we show the ROC curves obtained for all three com-
puted visualization techniques. The Zc and Zr results for the com-
plex data reaffirms the findings in Table 1, that Zc has better perfor-
mance by including the phase in the visualization. The Zr result for
the magnitude-only data has the worst performance, which indicates
that by not using the phase in the actual ICA processing we lose sen-
sitivity and specificity in detecting activated voxels. The AUCs of
the three visualization techniques are: 1. Zr Magnitude data: 0.65,
2. Zr Complex data: 0.71, 3. Zc Complex data: 0.73. Similar results
were obtained with the other extracted ICs.

5. DISCUSSION

A complex-valued group ICA algorithm was applied for the first time
to an event-related paradigm. We show how complex-ICA can suc-
cessfully extract task-related and intrinsic networks. Additionally,

0 0.5 1
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0.5

1
ROC Curve
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T
P

Zc Complex
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Zr Mag

Fig. 2. AUC of the ROC curves obtained by the three visualization
techniques on the DMN IC extracted from the complex and magni-
tude only fMRI data.

we show how working on the complex-domain increases our ability
to detect activated voxels in various ICs of interest, in particular the
DMN component which is of great interest in clinical studies. We
introduced the first visualization method that uses the phase in the
estimated fMRI ICs to identify task or function-related voxels with
greater sensitivity than typical magnitude-based methods. FPV is
not specific to ICA, and it can be used with other complex-valued
data and model-driven fMRI applications.

Future work will focus on studying any increase in discrimina-
tion power obtained by using complex-valued ICA to event-related
fMRI data. We will also try to identify any additional information
that may be encoded in the phase of the extracted voxels that could
provide insight of the underlying physics.
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