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ABSTRACT 

 
Although many studies of facial expression analysis have 
been conducted, most previous works indeed focused on 
expression recognition. Different from previous works, this 
paper proposes a novel approach to learn the expression 
kernel for facial expression intensity estimation. The 
solution involves first aligning the optical flow to a neutral 
face to reduce inter-person variations in facial geometry, 
followed by solving an optimization problem with the 
ordinal ranking of expression intensities in temporal domain 
as constraints. Extensive experiments on the Cohn-Kanade 
database manifest that using the learned expression kernels 
leads to superior performance than the previous methods for 
facial expression intensity estimation. 
 
Index Terms—Facial expression analysis, expression 
intensity estimation, quadratic programming. 
 

1. INTRODUCTION 
 
Facial expression is a dynamic process from onset to apex, 
which is about expression intensity variation in temporal 
domain. To analyze the expression dynamics, only 
classifying expressions into basic categories is insufficient 
for obtaining the in-depth understanding of human emotion. 
Also because estimating the expression intensity is not a 
hard decision problem, the conventional classification 
methods are unsuitable as illustrated in Figure 1. On the 
other hand, the regression methods can not be used either 
because we can not have ground-truth of absolute intensities. 
These issues make intensity estimation a challenging task. 
So far, the estimation of facial expression intensity has only 
been studied by a few previous works (e.g. [1, 2]). 

In the literature, several previous works attempt to 
recognize fine-grained changes in facial expression based on 
the Facial Action Coding System (FACS) [3], which 
decomposes a facial expression into a number of specific 
action units (AUs). Clearly, for face images of the same 
expression, the local motion in some specific facial regions 
is similar because the same AUs are shared. However, it is 
still an open problem to automatically label the intensity of 
AUs due to FACS does not give a clear definition for AU’s 
intensity level. In view of this, we aim to build a function 

which simulates the combination of AUs and outputs an 
estimation of the expression intensity. This paper proposes a 
learning approach to building kernels to be used with kernel 
machines for facial expression intensity estimation. We 
formulate the learning task as a multi kernel learning (MKL) 
problem, where the aligned intra-person optical flow is used 
to alleviate the inter-person variations. The learned kernel 
can better measure the similarity between face images as 
human expectations for an expressional face, thus providing 
advantages for facial expression analysis. It is ready to be 
used in conjunction with kernel machines, such as SVM, for 
expression classification. The rest of this paper is organized 
as follows: In Section 2, we review some related works 
about kernel learning. Section 3 describes the details of the 
learning framework, which consists of the expression flow 
computation and the optimization problem formulation for 
learning the facial expression kernels. Section 4 gives 
experimental results for the proposed application. Finally we 
concluded this paper in the last section. 
 

2. MULTIPLE KERNEL LEARNING 
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Figure 1. (a) A happiness image sequence with increasing 
expression intensities, (b) Output of an expression 
recognition classifier, and (c) Intensity estimation results by 
using the proposed expression kernel.   
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For kernel machines, the underlying kernel )|,,(k , 
where denotes the type of the kernel and its parameter 
values, plays a very crucial role for the performance of the 
kernel machines. In crafting appropriate kernels, researches 
attempt to find an optimal way to linearly combine M given 
kernels to obtain a stronger kernel function k̂ , i.e. 
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Connecting the ensemble kernel with a kernel machine for 
binary class data N

iii yx 11, , for example, will 
result in the following formulation:  
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where b is a constant bias and i  are coefficients 
determined from training. Intuitively the base kernels with 
higher j   values are deemed more useful, thus determining 

the optimal coefficients M,...,1  corresponds to finding 
appropriate weights for best combining the M feature 
representations in terms of M kernel matrices. Researchers 
have achieved many successful results with different kernel 
machines by using the MKL approach (e.g. [4-6]). 

3. PROPOSED EXPRESSION KERNEL 

This section details the proposed approach to building 
expression kernels for expression intensity estimation. 

3.1. Optical flow computation and normalization 

Because optical flow preserves good information of the 
correlation between two images, we compute it as the 
features of face images used in our expression kernel for 
expression analysis. In this work, we employed the 
constrained optical flow algorithm proposed in [7] to 
compute the optical flow between two face images. However, 
different people have distinct facial geometry; a 
normalization procedure is required to eliminate the inter-
person variation. Let us denote )(Ei

pEX  as an expression 
image of expression Ei, NEp is the neutral face image of 
person p, and OF( ) is a directional operator defined for the 
optical flow computation with two images. The 
normalization procedure is started from a global neutral face 
NE0 to obtain the inter-person optical flow 

pper NENEOFOF ,0,int  and the overall optical flow 
)(

0, Ei
p

Ei
all EXNEOFOF . The intra-person optical flow 

can be computed for each facial expression image by 
subtracting the overall optical flow from the inter-person 
optical flow as summarized in Figure 2.The input optical 
flows are thus represented with the same geometry of NE0. 

Given an expressional face image, we compute its intra-
person expression flow as the representation and learn the 
kernels for expression analysis in the next subsection. 
 
3.2. Learning an expression kernel 
 
To estimate the expression intensity, a measure on locations 
where the associated AUs occur is required. Rather than 
using the hand-crafted rules, here we formulate a constrained 
optimization problem based on MKL to learn an expression 
kernel for intensity estimation. Let expk̂  be a kernel function 
defined to measure the similarity of two expression optical 
flows given by:  

exp
ˆ ( , ) ,j j

j

k OF OF w k OF OFa b a b
,           (3) 

where kj is a dot-product kernel defined on two vectors 
corresponding to the jth component of expression flows OFa 
and OFb, denoted by (OFa)j and (OFb)j:  
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Our aim is to derive an expression kernel expk̂ by MKL 
whose kernel values between expression flows of similar 
expression intensities are larger than those of different 
expressions or intensities. Given a video sequence, suppose 
the intensity of each frame increases from the start state to 
the apex with time t. As the ranking-based framework [2], 
we use the pair-wise ordinal relationship along the temporal 
domain to provide the ordinal constraints in building expk̂ . 

Let )(Ei
apexOF be the expression template of expression Ei 

computed by averaging the optical flows of apex images of 
all available sequences. Since the expression kernel 

expk̂ measures similarity in the expression intensity space, the 

kernel value between )(Ei
apexOF  and an expression flow with 

stronger intensity, e.g. )(Ei
tOF , should be larger than that 

between )(Ei
apexOF  and )(

1
Ei

tOF , i.e..  
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Figure 2. Align expression flows to NE0 
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According to the ordinal ranking of expression intensities, a 
constrained optimization problem is formulated. The 
solution clearly leads to the optimal weighting configuration 

],..,,[ 21 nwwww  from the training data. It is formulated 
by maximizing the weighted gap between the kernel values, 
while minimize the training errors. The constrained 
optimization problem for the optimal w is given as follows:  
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where Q is a matrix corresponding to the 2D Laplacian 
operator that imposes spatial smoothness of w, and m is the 
number of all possible combinations of )()( , EiEi OFOF ba  

derived from training data. )()( , EiEi OFOF ba  denotes a pair of 

expression flows where )(EiOFa  is labeled with stronger 

intensity than )(EiOFb  according to their temporal order 
within a facial expression image sequence. The slack 
variables ξi for the ith constraint is introduced to tolerate that 
example violates the constraint. In order not to obtain the 
trivial solution where all ξi take on large values, we penalize 
them in the objective function with a penalty parameter C. 
The parameter α is to balance the smoothness term (on the 
left-hand side) and data term (on the right-hand side), and ν 
is a parameter to control the significance of separation ρ for 
training examples. Also, the coefficients in w should be able 
to enlarge ρ as wide as possible to obtain better 
generalization capability. 

The resulted optimization problem is a convex quadratic 
programming (QP) problem, which has a global optimum 
and can be easily solved by using a standard QP solver. Let 
S denote the union set of all subsets of expression optical 
flows of different expression types, i.e. S={S1,S2,…,S|S|}. By 

 using the one-against-rest approach to assume the kth 
expression as the target expression, i.e. S+ = Sk, and using the 
others as negative examples, i.e. S

- = S - Sk, we train an 
expression kernel for each expression k by solving the 
optimization problem in Equation (6). Figure 3 illustrates the 
constraint formulation procedure for more clarity. 
 
4. APPLICATION TO EXPRESSION INTENSITY 
ESTIMATION 
 
Since a kernel function can be viewed as a similarity 
function encoding the prior knowledge, it is possible to give 
a face image x a relative intensity measure through 
comparing it with a typical expression template for reference. 
The problem of estimating an expression intensity measure 
is thus reduced to computing the similarity of two expression 
flows using kernel )(

exp
ˆ Eik . As shown in Figure 4, we give the 

expression intensity score to an input face image x through 
computing )()(

exp ,ˆ Ei
apex

Ei
x OFOFk   with the scoring function:  
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Because there are several styles to express the same emotion 
for different people (for example, the happiness can be 
shown by either smiling or laughing loudly), the expression 
intensity score is the weight-averaged score using T 
templates of expression Ei. A sigmoid function with 
parameter at and bt is here used to scale the kernel function 
output to [0,1], and gt is the prior of style t. )(Ei

xOF is un-
normalized here to receive stronger response for larger facial 
motion, and )(ˆ Ei

tk  is trained using the clustered examples 
with the tth template. Parameters gt, at, and bt can be 
estimated via least-squares fitting the score function in eq. (7) 
to the intensity-labeled data.  

Figure 4. Estimating the facial expression intensity for an input 
face image x with the learned expression kernel. 
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Figure 3. Illustration of constraint formulation according to (5). 
Each  represents an ordinal constraint in (6). 
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In Figure 5, we give experimental results by using the 
CMU Cohn-Kanade database [8]. The Relevant Accuracy 
(RA) [9] is used for evaluating the performance of intensity 
estimation with the definition:  

#      
#     

of correctly ranked relevant pairs
RA

of all relevant pairs
        (8) 

Given a sequences with n frames, there are 2
nC  relevant 

pairs to test the accuracy with the ground truth of ordinal 
relationship along time. An interval of 3 frames is applied to 
rebuilt image sequences as [2] since the variations of 
consecutive images are too subtle to be distinguished. We 
also compare the RA measure in Figure 5 by using the 
proposed intensity estimation algorithm with results by using 
AdaSVM [10], AdaBoost [11], RankBoost and 
RegRankBoost [2] algorithms with the haar-like features. 
Although the RankBoost and RegRankBoost applied the 
similar ordinal ranking concept in the learning procedure, 
our intensity estimation results demonstrates the higher 
accuracy for all expressions except the anger expression. 
This is because using the AdaBoost-based approaches with 
the Haar-like features is prone to select weak learners of 
outlier local features, such as wrinkles. In contrast, our 
kernel is completely determined by the associated 
expression optical flows. However, for anger expression the 
proposed kernel-based method does not perform better than 
others partly because the motion of compressing lips in 
anger expression is not easily detected from the expression 
flows. 
 

5. CONCLUSIONS 
 
This paper proposed a novel approach to learn the 
expression kernel for facial expression intensity estimation. 
The expression motion of a facial expression image is 
represented by the optical flow, while a normalization 
strategy is performed to reduce the inter-person variations in 
facial geometry. An MKL-based learning approach is then 
used to learn the expression kernels, where the weighting 

coefficients are determined by solving a constrained 
optimization problem. Extensive experiments on the Cohn-
Kanade facial expression database showed the advantages of 
the proposed expression kernel on expression intensity 
estimation. In the future, we plan to extend this expression 
kernel by including the temporal and appearance 
information to further improve the accuracy for facial video 
analysis. 
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Figure 5. Comparison of relative accuracy measures for different methods [2] on the testing set 
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