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ABSTRACT

This paper presents Data-Driven Tree-structured Bayesian

network (DDT), a novel probabilistic graphical model for

hierarchical unsupervised image segmentation. The DDT

captures long and short-ranged correlations between neigh-

boring regions in each image using a tree-structured prior.

Unlike other previous work, DDT first segments an input

image into superpixels and learn a tree-structured prior based

on the topology of superpixels in different scales. Such a

tree structure is referred to as data-driven tree structure. Each

superpixel is represented by a variable node taking a discrete

value of class/label of the segmentation. The probabilistic

relationships among the nodes are represented by edges in

the network. The unsupervised image segmentation, hence,

can be viewed as an inference problem of the nodes in the

tree structure of DDT, which can be carried out efficiently.

We evaluate quantitatively our results with respect to the

ground-truth segmentation, demonstrating that our proposed

framework performs competitively with the state of the art in

unsupervised image segmentation and contour detection.

Index Terms— Unsupervised image segmentation, tree

structure, Bayesian networks, graphical models, superpixels.

1. INTRODUCTION

Unsupervised image segmentation has long been an impor-

tant subject of research in computer vision and image under-

standing. In the Bayesian formulation, a smoothing prior is

employed to capture spatial correlations that exist between

neighboring regions. Early work on Bayesian image segmen-

tation focused on undirected models with lattice structure, e.g.

Markov random fields (MRFs) [3] , whereby hidden units cor-

responding to true image labels are assumed connected us-

ing undirected lattice graph. Such a structure, however, has

proved to be computationally expensive and inference on such

a graph is generally NP-hard [1].

An alternative formulation using directed graphical mod-

els, i.e. Bayesian networks, was subsequently proposed. Feng

et al. [1] used a tree-structured belief network (TSBN)—

a quadtree Bayesian network [2] with 4 neighboring pixels

sharing the same parent node. The hierarchical tree struc-

ture allows TSBN to capture multi-scale correlations (both

short and long-ranged) similar to MRF while maintaining ef-

ficiency in inference and parameter estimation. One main

drawback of TSBN, however, is that the fixed tree structure

used to enforce the local homogeneity between neighboring

pixels disregards the natural object boundaries, which often

results in “blocky” segmentation output. Several approaches

have been proposed to address this problem by introducing

complex, cross-linked model [2], which in turn requires more

complex inference algorithms such as junction tree algorithm

or loopy-belief propagation .

Recently, the use of graphical models with adaptable

structures has been proposed in [4] . By treating the model

structure as a random variable and adapting the structure to fit

each input image, the proposed models significantly mitigate

the disagreement between the segmentation boundary and the

natural object boundary. The need to re-estimate the model

structure in every iteration indeed incurs significant compu-

tation cost—a major drawback for this line of approach.

In this work, we propose a novel probabilistic graphi-

cal model called Data-Driven Tree-Structured Bayesian Net-

works (DDTs) where all good merits of tree and hierarchical

multi-scale structure are preserved. The tree structure of DDT

is built according to the similarity of image regions in an in-

put image, thus can describe approximately the orientation of

objects in the image. As a result, the short- and long-ranged

correlations encoded by DDT can be more precise than that

of TSBN [1]. Unlike the flexible structure graphical models

proposed in [4] , DDT does not need to adapt its structure in

every iteration which drastically reduces the computation of

the algorithm. In addition, instead of using pixel as the finest

information scale, we use superpixel [5], a group of locally

smooth labeling region, which contains more descriptive con-

textual information of the corresponding image region than

at the pixel level. Experimental results demonstrate that our

method performs competitively to the state of the art.

2. PROBABILISTIC MODEL OF DDT

DDT is a directed acyclic graph (DAG) with 2 disjoint sets

of random variables; hidden and observed, graphically rep-

resented by round-shaped and rectangular-shaped nodes re-

spectively, as depicted in Fig. 1. Hidden and observed nodes

are associated with image sites which in general can be any
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Fig. 1. The overview of Data-Driven Tree-Structured Bayesian Network (DDT) framework. The original image (1) is over-segmented

in multi-scale hierarchical manner in process (2). (3) The corresponding DDT is built according to the superpixels in each level. (4) The

features are extracted from the original image corresponding to each superpixel. (5)-(7) After learning and inference algorithm, the resulting

hierarchical segmentation can be interpreted from level H1.

arbitrary image region, e.g. pixels, block of pixels, or super-

pixels. Throughout the paper, we associate image sites with

superpixels as mentioned earlier in the text. All nodes in the

structure are connected by directed edges indicating condi-

tional independence assumption between them.

The hierarchical tree structure of DDT can be described

as follows. There are L levels in the hierarchy, where Hl de-

notes the set of indices in the level l ∈ {1, ..., L}, and, when

it is appropriate, the level Hl is used to denote the level l of

the DDT. The root level HL contains only a single superpixel,

which is equivalent to the entire input image (the correspond-

ing index set HL = {1}). As the level index l decreases along

the depth of the tree, the number of the nodes containing in

each level increases. The level H1 thus corresponds to the

finest scale of the resulting segmentation of the DDT. Laying

beneath the level Hl is the evidence level E l, whose nodes

are the observed image features, which are connected to their

corresponding parent nodes in the level Hl in a one-to-one

manner. The indices of nodes in the tree are used in ascending

order from the root to the leaf. The set of total indices in the

structure is denoted by H ∪ E , with the hidden and observed

nodes denoted as H = {Hl}Ll=1 and E = {E l}Ll=1 respec-

tively. The number of nodes in the hidden and evidence level

l is |Hl| and |E l| respectively, and we denote the total number

of nodes in the structure as N = |H| + |E|. Generally, we

have |H1| > |H2| > · · · > |HL|, and the same applies for E ,

which constitutes a pyramidal tree.

The structure connectivity is characterized by an N × N
adjacency matrix Z, where zji takes a value 1 if node j ∈ Hl

and i ∈ {0,Hl+1} are connected. Connections are estab-

lished under a constraint that a node in level l can only con-

nect to a parent node in the adjacent upper level l + 1 except

the root node which connects to null. Therefore, a realization

of structure matrix Z can have at most one entry equal to 1 in

each row. Unlike [4], the structure Z in our framework is not

a random variable as it is learned from each input image from

a separate algorithm and remain fixed throughout the process

of segmenting the image.

Each round-shaped node in Fig. 1 represents discrete ran-

dom variable xj , of an image site j in the level l, which takes

a value from a label set Cl = {1, ..., Cl} such that xjc = 1
and xjć;ć �=c = 0 if the image site j has class label c ∈ Cl.

This notation facilitates the use of the following expression

for the multinomial conditional probability of hidden node xj

given its parent xi as p(xj |xi, θji; l) =
∏Cl

v=1

∏Cl

u=1 φ
xjvxiu

jivu ,
where φjivu denotes the class transition probability p(xjv =
1|xiu = 1) which is conventionally referred to as conditional
probability table (CPT). For the sake of computational sta-

bility, let us assume that the CPT is shared among all the

nodes in the same level, i.e. φjivu = φj́ívu = φlvu for

l ∈ {1, ..., L−1}. Consequently, φ = {φlvu} collectively de-

notes the CPT of the model which is given by p(xj |xi, φ; l) =
∏Cl

v=1

∏Cl

u=1 φ
xjvxiu

lvu .

Note that this framework is unsupervised, hence the prob-

abilistic model of a class c is not provided a priori, and the

number of labels allowed for each input image must be de-

fined before executing the algorithm. Estimating the appro-

priate number of classes for each image (the model selection

problem) is explained in more detail in Section 3.

We introduce observed variables represented by shaded

square-shaped nodes in the structure as illustrated in Fig.

1. Each observed random variable ye ∈ Rd of an im-

age site e ∈ E represents the relevant image features such

as color or texture which take on continuous values. Ex-

tensive details on our choice of features will be discussed

in the experimental results section. We model the fea-

ture vector ye using a multivariate Gaussian distribution

given as: p(ye|xi; l) =
∏Cl

c=1 N (ye|μc,Λ
−1
c ; l)xic , where

N (ye|μc,Λ
−1
c ; l) is the Gaussian distribution with μc and Λc

are Dl × 1 mean parameter and Dl ×Dl precision matrix for

class c in the level l respectively. Generally, the cardinality of

the label set Cl decreases as the level l decreases.
Using the notation described above, we can now write the

hidden labels collectively as X = {xj}j∈H and the observed
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image features as Y = {ye}e∈E . The log-likelihood of the
complete data can be expressed as:

log p(X,Y |Z, θ)

=
L∑

l=1

⎛
⎝∑

e∈El

∑
i∈Hl

zei
∑
c∈Cl

xic logN (ye|μc,Λ
−1
c ; l)

⎞
⎠

+

L∑
l=1

⎛
⎝∑

j∈Hl

∑
i∈{0,Hl+1}

zji
∑
v∈Cl

∑
u∈Cl+1

xjvxiu log φlvu

⎞
⎠ .

All the parameters of the joint can be grouped in the set

θ = {φlvu, μc∈Cl ,Λc∈Cl}, ∀l ∈ {1, ..., L − 1}, ∀c, v, u ∈
{1, ..., Cl}. Note that the connectivity structure matrix Z is

assumed known from each input image, hence is excluded

from the parameter set.
We present a maximum likelihood estimation algorithm

for DDT model parameter θ using Expectation-Maximization
(EM) algorithm. In M-step, by maximizing the expectation
of the log-likelihood w.r.t. θ, we derive closed-form update
equations for μc, Λc and φlvu as follows:

μc∈Cl =

∑
e∈El

∑
i∈Hl

zei 〈xic〉p(X|Y,Z,θt−1) ye

∑
é∈El

∑
í∈Hl

zeí 〈xíc〉p(X|Y,Z,θt−1)

Λ−1

c∈Cl =

∑
e∈El

∑
i∈Hl

zei 〈xic〉p(X|Y,Z,θt−1) (ye − μc)(ye − μc)
�

∑
é∈El

∑
í∈Hl

zeí 〈xíc〉p(X|Y,Z,θt−1)

φlvu =
φ̂lvu∑
v́ φ̂lv́u

,

where φ̂lvu =
∑

j∈Hl

∑

i∈{0,Hl+1}
zji 〈xjvxiu〉p(X|Y,Z,θt−1) de-

notes the unnormalized class-transition CPT and 〈f(x)〉q(x)
denotes the expectation of function f(x) respect to the dis-

tribution q(x). The update equations above require that we

compute the following expectation terms: 〈xic〉p(X|Y,Z,θt−1)

and 〈xjvxiu〉p(X|Y,Z,θt−1), which can be done efficiently us-

ing a sum-product algorithm.

We can infer the distribution at each node of the the hid-

den level (Hl) using maximum posterior marginal (MPM)

which is optimal for sitewise 0 − 1 loss function . That

is, we label image site j with label c∗ = argmax
c∈Cl

p(xj =

c|Y, Z, θ∗; l), which can be computed using the sum-product

algorithm as p(xj = c|Y, Z, θ∗) = 〈xjc〉p(X|Y,Z,θ∗).

3. EXPERIMENT AND RESULTS

We report our results from experiment on segmentation and

matching of boundary images from Berkeley Segmentation

Data Set and Benchmarks 300 (BSDS300), reported in [6].

Although the main focus of this framework is for unsuper-

vised image region segmentation, we also report our results as

a contour detection problem. The quantitative comparison of

the region segmentation is based on two performance mea-

sures: 1) Probabilistic Rand Index (PRI) measures the consis-

tency of segmentation between the calculated and the ground

truth segmentation and 2) Variation of Information (VoI) met-

ric measures the distance between two segmentations.

The performance of contour detection is based on the

precision-recall framework for image segmentation devel-

oped by [7]. The measure evaluates the contour detection

performance in terms of precision (P) and recall (R), whose

harmonic mean, namely F-measure, at the optimal detector

threshold, summarizes the detection quality. All the experi-

ments are run in MATLAB r2010a on an Intel(R) Core(TM)2

Duo CPU E8400 @ 3.00GHz machine with Ubuntu operating

system.

As opposed to our previous work [8] on DDT, our pro-

posed multiscale evidence DDT (meDDT) has evidence in all

the levels of the tree structure built from the superpixels gen-

erated by ultrametric contour map (UCM) [6]. The number

of tree level is fixed at 5 throughout the experiment, and the

number of superpixels in each level is 1, 10, 20, 150, and 300

respectively. The data-driven structure is built from majority-

overlapping criteria as proposed in [8]. The number of la-

bels in each input image is estimated by GMM segmentation

with Bayesian information criteria (BIC). More specifically,

we first randomly picking 10% of the points in each super-

pixel of the input image, then applying GMM segmentation

with BIC on the feature space. The number of classes is each

level is determined separately using the same method. In this

experiment, we use only CIELuv and the location features.

The meDDT is compared against 4 contour detection al-

gorithms made available publicly: MeanShift [9], NCuts[10],

Felzenszwalb and Huttenlocker (FH) [11] and complete ultra-

metric contour mapping (comp UCM) [6] which is the state

of the art. The results are listed in Table 1 in the descending

order with respect to PRI, top is the best. In terms of con-

tour detection, meDDT outperforms all other candidate algo-

rithms due to its bigger F-measure, except for comp UCM.

When compared using region segmentation, meDDT also out-

performs MeanShift and NCuts, but not comp UCM and FH,

because of its larger PRI and smaller VoI.

The comp UCM is obtained by accumulating several

hundreds of hierarchical contours of an input image together,

hence the resulting contour is concentrated on the objects

appearing in several scales. However, meDDT only uses

5 levels of UCM, as opposed to several hundreds of them,

to form multiscale contour. We shall evaluate the selected

5-level contours and name it as init UCM as we use it to

initialize the meDDT. The contour detection performance of

init UCM is slightly degraded from the comp UCM, but still

competitively outperforms meDDT in contour detection, but

not in region segmentation.

We also compare meDDT against Gaussian Mixture mod-

els for INDependent superpixel (GMiND) which is meDDT

with all the tree-structured prior removed. Visually, GMiND
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Contour Region

algorithms P R F PRI VoI run-time

meDDT 0.68 0.69 0.68 0.77±0.0023 2.16 1 min

init UCM 0.70 0.69 0.69 0.76 3.07 -

GMiND 0.70 0.68 0.69 0.76±0.0037 2.19 30 sec

reDDT 0.67 0.73 0.70 - - -

comp UCM - - 0.70 0.81 1.65 -

Meanshift - - 0.63 0.76 2.48 -

NCuts - - 0.62 0.72 2.93 -

FH - - 0.58 0.78 2.66 -

Table 1. Contour detection and region segmentation on

BSDS300. The algorithm is in descending order with respect

to PRI, top is the best. The optimal single scale for region

segmentation is l = 2.

segmentation results are noisier than that of meDDT as shown

in Fig. 2, however, that can occasionally be an advantage

in some images containing a lot of details. Quantitatively,

meDDT is superior to GMiND in region segmentation evalu-

ation, but is inferior to GMiND in contour detection because

BSDS300’s human-made ground-truth seem to prefer multi-

scale contours with significant details.

Additionally, we observe that the segmentations from

meDDT seem to distinguish the object contour well, but does

not seem to preserve the details. On the other hand, the

init UCM seems to be noisy and preserve well the details of

the contour. Therefore, we reinforce init UCM by combining

with the multiscale contours result from meDDT, resulting

in reinforced DDT (reDDT) which outperforms all of its

descendant contours.

4. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a probabilistic graphical

model framework for unsupervised image segmentation

called data-driven tree-structured Bayesian network (DDT).

The proposed framework improves the segmentation result

obtained from fixed quad-tree structure method with the

less computational cost than the dynamic structure methods,

hence combines good merits of both extremes. In addition to

ITSBN, we incorporated evidence variables in every level of

the tree structure. The meDDT using only color and location

features outperforms existing algorithms and can perform

competitively with the state of the art. This motivates us to

extend our experiment to richer set of features.

In this paper, we have focused our study on unsupervised

image segmentation, however, the proposed framework can

also be extended to supervised and semisupervised frame-

work as well. Furthermore, the spirit of this framework

is probabilistic model containing nodes and edges, so this

framework is applicable to not only images, but also to any

structured data.

Fig. 2. Segmentation results. The original images (top) and cor-

responding ground-truth multiscale contours (2nd row). The mul-

tiscale contours produced by our meDDT (3rd row) and GMiND

(4th row). The optimal scale segmentation of meDDT (5th row) and

GMiND (6th row).
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