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ABSTRACT

This paper proposes an image recognition technique based on sep-
arable lattice 2-D HMMs (SL2D-HMMs) using the variational
Bayesian method. SL2D-HMMs have been proposed to reduce the
effect of geometric variations, e.g., size and location. The maximum
likelihood criterion had previously been used in training SL2D-
HMMs. However, in many image recognition tasks, it is difficult to
use sufficient training data, and it suffers from the over-fitting prob-
lem. A higher generalization ability based on model marginalization
is expected by applying the Bayesian criterion and useful prior in-
formation on model parameters can be utilized as prior distributions.
Experiments on face recognition indicated that the proposed method
improved image recognition.

Index Terms— face recognition, hidden Markov model, sep-
arable lattice 2-D HMMs, Bayesian criterion, variational Bayesian
method

1. INTRODUCTION

Statistical approaches have been successfully applied in image
recognition. Especially, principal component analysis (PCA) based
approaches such as the eigenface method [1] and subspace method
show good recognition performance in many applications. Although
there are many significant classifiers and feature representations,
some pre-processing is usually applied to input images prior to fea-
ture extraction and classifier training. The aim of pre-processing
is to normalize image variations, e.g., geometric variations such
as size, location, and rotation. These normalization processes are
important because many classifiers cannot absorb such image vari-
ations and the accuracy of normalization significantly affects image
recognition. However, task dependent heuristic techniques are ap-
plied independently of classifiers. Therefore, it is necessary to
develop normalization techniques for each task. Furthermore, the
final objective in image recognition is not to accurately normal-
ize images for human perception but to achieve better recognition.
Therefore, it is a good idea to integrate the normalization processes
into classifiers and optimize them based on a consistent criterion to
improve recognition.

Hidden Markov model (HMM) based techniques have been
proposed to reduce the influence of geometric variations. Geometric
matching between input images and model parameters is repre-
sented by discrete hidden variables and the normalization process
is included in calculating probabilities. However, the extension of
HMMs to multi-dimensions generally leads to an exponential in-
crease in the amount of computation for the training algorithm. Sep-
arable lattice 2-D HMMs (SL2D-HMMs) have been proposed [2]
to reduce computational complexity while retaining outstanding
properties that model multi-dimensional data. SL2D-HMMs can
perform elastic matching both horizontally and vertically, which

makes it possible to model not only invariances to the size and
location of an object but also nonlinear warping in all dimensions.

In many image recognition tasks, only a small amount of train-
ing data is available and the efforts to achieve high generalization
ability are required. The maximum likelihood (ML) criterion has
typically been used in image recognition using SL2D-HMMs. How-
ever, since the ML criterion produces a point estimate of model pa-
rameters, the estimation accuracy may be degraded due to the over-
fitting problem when the amount of training data is insufficient. The
Bayesian criterion, on the other hand, assumes that model param-
eters are random variables, and a high generalization ability can be
obtained by marginalizing all model parameters in estimating predic-
tive distributions. Moreover, the Bayesian criterion can utilize prior
distributions representing useful prior information on model param-
eters. However, the Bayesian criterion requires complicated integral
and expectation computations to obtain posterior distributions when
models have hidden variables. To overcome this problem, maxi-
mum a posteriori (MAP) method [3] and variational Bayesian (VB)
method [4] have been proposed as approximation methods. We ap-
plied the Bayesian criterion to image recognition based on SL2D-
HMMs, and derived the training algorithm based on the VB method,
both of which are explained in this paper.

The rest of the paper is organized as follows. Section 2 briefly
explains the structure of SL2D-HMMs, and Section 3 describes the
VB method for SL2D-HMMs. Section 4 presents face recognition
experiments we did on the XM2VTS database and we finally con-
clude the paper in Section 5.

2. SEPARABLE LATTICE 2-D HMMS

Separable lattice 2-D hidden Markov models (SL2D-HMMs) are de-
fined for modeling two-dimensional data. The observations of two-
dimensional data, e.g., the pixel values of an image and image se-
quence, are assumed to be given on a two-dimensional lattice:

O = {Ot | t = (t(1), t(2)) ∈ T }, (1)

where t denotes the coordinates of the lattice in two-dimensional
space T and t(m) = 1, . . . , T (m) is the coordinate of the m-th di-
mension for m ∈ {1, 2}. Observation Ot is emitted from the state
indicated by hidden variable St ∈ K . Hidden variables St ∈ K
can take one of K = K(1)K(2) states, which are assumed to be ar-
ranged on two-dimensional state lattice K = {1, . . . , K}. In other
words, a set of hidden variables {St | t ∈ T } represents a segmen-
tation of observations into K states, and each state corresponds to a
segmented region in which the observation vectors are assumed to
be generated from the same local deformation. Since observation
Ot is only dependent on state St as in ordinary HMMs, dependen-
cies among hidden variables determine the properties and modeling
abilities of two-dimensional HMMs.

To reduce the number of possible state sequences, the hidden
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Fig. 1. Graphical representation of SL2D-HMMs

variables to be composed of two Markov chains by constraint are:

S = {S(1), S(2)}, (2)

S(m) = {S(m)

t(m) | 1 ≤ t(m) ≤ T (m)}, (3)

where S(m) is the Markov chain along with the m-th coordinate

and S
(m)

t(m) ∈ {1, . . . , K(m)}. The composite structure of hidden
variables in SL2D-HMMs is defined as the product of hidden state
sequences:

St = (S
(1)

t(1)
, S

(2)

t(2)
). (4)

This means that the segmented regions of observations are con-
strained to rectangles, which allows an observation lattice to be
elastic both horizontally and vertically. The number of possi-
ble state sequences can be reduced by using this structure from

{Q
m K(m)}

Q
m T (m)

to
Q

m{K(m)}T (m)
.

Figure 1 shows the graphical representation of SL2D-HMMs.
The joint probability of observation vectors O and hidden variables
S can be written as:

P (O, S |Λ) = P (O |S,Λ)

2Y
m=1

P (S(m) |Λ). (5)

When it is assumed that the state output probability distributions
are a single Gaussian distribution, a set of model parameters Λ is

represented by {π(m), a(m), μk,Σk}, where {π(m)
i }K(m)

i=1 is the

initial state probability, {a(m)
ij }K(m)

i,j=1 is the state transition probabil-
ity, and μk and Σk are the mean vector and the covariance matrix
of the Gaussian distribution at state k on 2-D state space K , i.e.,

P (S
(m)
1 = i |Λ) = π

(m)
i , P (S

(m)

t(m) = j |S(m)

t(m)−1
= i,Λ) = a

(m)
ij ,

and P (Ot |St = k,Λ) = N (Ot |μk,Σk).

3. SEPARABLE LATTICE 2-D HMMS USING
VARIATIONAL BAYESIAN METHOD

3.1. Bayesian criterion

The maximum likelihood (ML) criterion has typically been used to
train SL2D-HMMs in image recognition. The optimal model param-
eters are estimated in the ML criterion by maximizing the likelihood
of training data as:

ΛML = arg max
Λ

P (O |Λ). (6)

The predictive distribution of testing data X in the testing stage is
given by P (X |ΛML). However, since the ML criterion produces a
point estimate of model parameters, the estimation accuracy may be
decreased due to the over-fitting problem when there are insufficient
numbers of training data.

On the other hand, the predictive distribution of the Bayesian
criterion is given by:

P (X |O) =

Z
P (X |Λ) P (Λ |O) dΛ. (7)

Posterior distribution P (Λ |O) for a set of model parameters Λ can
be written with the Bayes theorem.

P (Λ |O) =
P (O |Λ)P (Λ)

P (O)
, (8)

where P (Λ) is a prior distribution for Λ and P (O) is evidence.
The model parameters are integrated out in Eq. (7) so that the ef-
fect of over-fitting is mitigated. That is, the Bayesian criterion has
a higher generalization ability than the ML criterion when there are
insufficient numbers of training data. However, the Bayesian crite-
rion requires complicated integral and expectation computations to
obtain posterior distributions when models have hidden variables.
Maximum a posteriori (MAP) and variational Bayesian (VB) meth-
ods have been proposed as approaches to approximation to overcome
this problem.

The optimal model parameters in the MAP method are estimated
by maximizing the posterior probability for given training data as:

ΛMAP = arg max
Λ

P (O |Λ)P (Λ). (9)

The MAP method can utilize prior distribution P (Λ), and can be
seen as an extension of the ML criterion. Testing in the MAP method
is conducted using predictive distribution P (X |ΛMAP). However,
it still suffers from the over-fitting problem because of point esti-
mates, when there are insufficient numbers of training data.

3.2. Variational Bayesian method

The VB method is an approximate version of the Bayesian approach.
Since the VB method does not use an asymptotic assumption for
the amount of data, it is possible to overcome the problem in the
MAP method. An approximate posterior distribution is estimated
in the VB method by maximizing a lower bound for log marginal
likelihood F instead of the true likelihood. A lower bound for log
marginal likelihood is defined by using Jensen’s inequality:

ln P (O) = ln
X
S

Z
P (O, S |Λ) P (Λ)dΛ

= ln
X
S

Z
Q (S,Λ)

P (O, S |Λ) P (Λ)

Q (S,Λ)
dΛ

≥
X
S

Z
Q (S,Λ) ln

P (O, S |Λ) P (Λ)

Q (S,Λ)
dΛ

= F , (10)

where Q (S,Λ) is an arbitrary distribution. The relation between
the log marginal likelihood and the lower bound F is represented by
using the Kullback-Leibler (KL) divergence between Q (S,Λ) and
true posterior distribution P (S,Λ |O):

F = ln P (O) − KL(Q (S,Λ) ||P (S,Λ |O)). (11)

Therefore, maximizing F with respect to Q (S,Λ) provides a good
approximation of posterior distribution P (S,Λ |O) in terms of
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minimizing the KL divergence. The solution can be obtained by
functional approximation based on the variational method.

To obtain approximate posterior distribution (VB posterior dis-
tribution) Q (S,Λ), we assumed that random variables were condi-
tionally independent of one another, i.e.,

Q (S,Λ) = Q(S(1))Q(S(2))Q (Λ) , (12)

where
P

S(m) Q(S(m)) = 1 and
R

Q (Λ) dΛ = 1. Under this
assumption, the optimal VB posterior distributions that maximize
the objective function F are given by the variational method as:

Q(S(m)) = CS(m) exp

" X
S(m′)

Z
Q(S(m′))Q(Λ)

× ln P (O, S(1), S(2) |Λ)dΛ

#
, (13)

Q (Λ) = CΛP (Λ) exp

" X
S(1)

X
S(2)

Q(S(1))Q(S(2))

× ln P (O, S(1), S(2) |Λ)

#
, (14)

where CS(m) is the normalization term for Q(S(m)) and CΛ is that
for Q (Λ), and m′ is the m′-th dimension different from the m-th di-

mension. Since the VB posterior distributions, Q(S(m)) and Q (Λ),
that are obtained are dependent on each other, these updates need to
be iterated as the EM algorithm. The update equations increase the
value of the objective function F at each iteration until convergence.

Predictive distribution P (X |O) is estimated using Eq. (7) in
the testing stage of the VB method. Since Q(Λ) is an approxima-
tion of posterior distribution P (Λ |O), Q(Λ) can be substituted for
P (Λ |O) in Eq. (7). Although Eq. (7) includes a complicated ex-
pectation calculation, the same approximation as that in training can
be applied. In face recognition using SL2D-HMMs, SL2D-HMMs
are trained for each class, i.e., subject, separately, and the likelihood
of testing data, which is calculated by the predictive distribution of
SL2D-HMMs, is compared among all subjects and the class which
obtains the highest likelihood is chosen as the result.

3.3. Prior distribution

The Bayesian criterion has an advantage in that it can utilize prior
distributions representing useful prior information on model param-
eters. Although arbitrary distributions can be used as prior distri-
butions, conjugate prior distributions are widely used as prior dis-
tributions. A conjugate prior distribution is a distribution where the
resulting posterior distribution belongs to the same distribution fam-
ily as the prior distribution. The conjugate prior distribution of an
SL2D-HMM is defined as:

P (Λ) =

2Y
m=1

"
D(π(m) |φ(m))

K(m)Y
i=1

D(a
(m)
i |α(m)

i )

#

×
Y
k

N (μk |νk, ξ−1
k Σk)W(Σ−1

k | ηk, Bk), (15)

where D(·) is a Dirichlet distribution, and N (·)W(·) is a Gauss-
Wishart distribution. These distributions can be represented by a set

of hyper-parameters {φ(m), α
(m)
i , νk, ξk, ηk, Bk}. The posterior

distributions can also be represented by the same set of parameters

{φ̄(m)
, ᾱ

(m)
i , ν̄k, ξ̄k, η̄k, B̄k} by using a conjugate prior distribu-

tion.

(a)

(b)

(c) (d) (e)

τ = 100000

VB MLUBM
τ = 1000τ = 100 τ = 10000

Fig. 2. (a) training images of different subjects, (b) all training im-
ages of one subject, (c) mean vector of UBM, (d) mean vector of
posterior distribution, (e) mean vector of model obtained with ML
method

Since the prior distributions of model parameters affect the esti-
mation of posterior distributions in the Bayesian criterion, determin-
ing prior distributions is a serious problem in estimating appropriate
models. We set the prior distribution to P (Λ) ∝ P (Õ |Λ) by us-

ing data Õ given in advance (we called this prior data). We used
all training samples for all subjects as prior data in the research dis-
cussed in this paper. This is the same idea as that in the universal
background model (UBM). The hyper-parameters based on a UBM
are given as:

φ
(m)
i =

T̃0i

τ
+ 1, α

(m)
ij =

T̃ij

τ
+ 1, νk = Õk,

ξk =
T̃k

τ
, ηk =

T̃k

τ
+ D, Bk =

T̃k

τ
C̃k, (16)

where D is the dimension of a feature vector and τ is the tuning
parameter. Statistics T̃0i, T̃ij , and T̃k correspond to the occupancy
probabilities of initial state i, state transition from i to j, and state
k with respect to the prior data, respectively. Statistics Õk and C̃k
correspond to the mean vector and the covariance matrix of prior
data in the k-th state. We can control the degree of influence the
prior distribution has on the posterior distribution by adjusting tuning
parameter τ .

4. EXPERIMENTS

Face recognition experiments on the XM2VTS database [5] were
conducted to evaluate the effectiveness of the proposed method. We
prepared eight images of 100 subjects; six images were used for
training and there were two images for testing. Face images of 64×
64 grayscale pixels were extracted from the original images. SL2D-
HMMs with 8 × 8, 16 × 16, 24 × 24, 32 × 32, 40 × 40, 48 × 48,
56 × 56, and 64 × 64 states were used in these experiments. The
hyper-parameters of the prior distribution were determined by using
statistics on UBM, which was trained from all training data. The ML
(conventional), MAP, and VB methods (proposed) were compared to
separately evaluate the two advantages of the Bayesian approaches,
i.e., the use of the prior distribution and marginalization of model
parameters.

Examples of training images and mean vectors have been given
in Figure 2 to demonstrate what effect prior distributions had in the
Bayesian approach. Figure 2(a) presents training images of different
subjects, and Figure 2(b) presents all training images for one subject.
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Figures 2(c) and 2(e) present the mean vector of the model obtained
with the UBM and ML method. Figure 2(d) has the mean vectors of
the posterior distributions obtained with the VB methods by varying
tuning parameter τ . The number of states is 40×40 for all models in
Figure 2. Although we can see that UBM roughly represents a facial
shape from Figure 2(c), it is difficult to identify the characteristics
of a particular subject. As tuning parameter τ is increased in Fig-
ure 2(d), the mean vector gradually changes from UBM to the image
of the subject in Figure 2(b). Using UBM as the prior distribution
with appropriate tuning parameter τ , similar state alignments are ex-
pected to be obtained for all subject models and this therefore avoids
the over-fitting problem. It can actually be seen in Figure 2(d) that
the VB method preserved the shape of the face using UBM, even
though the shape of the ML criterion in Figure 2(e) had collapsed
due to over-fitting. However, tuning parameter τ needs to be care-
fully determined, because the optimal value depends on the number
of training data and the number of states. Although a method of
automatically determining the tuning parameter based on cross vali-
dation [6] and empirical Bayes have been proposed, we adjusted the
value in this experiment to obtain the best recognition rate and the
adjusted values were obtained in a range from τ = 100 to τ = 6000.

Figure 3 shows the recognition rates for ML, MAP and VB
methods using six images as training data for each subject. We can
see from the results that the Bayesian criterion achieved significantly
better recognition rates than the ML criterion. Similar performance
was obtained under all conditions by comparing the MAP and VB
methods. However, the VB method was slightly better than MAP
when the appropriate number of states was selected. The highest
recognition rates for VB and MAP methods were obtained at 40×40
states (VB: 77.5%, MAP: 75.5%), and ML obtained the best results
at 32 × 32 states (ML: 66.5%). Although the recognition rate for
ML significantly decreased with the increasing number of states, the
VB and MAP methods retained higher performance than the ML
method. This implies that the prior distribution for the VB and MAP
methods effectively avoided the over-fitting problem.

Figure 4 shows the recognition rates for ML, MAP, and VB
methods while the numbers of training data were changed. The VB
and MAP methods achieved higher recognition rates than ML for
all numbers of training images. The difference between ML and
VB/MAP especially became larger when small numbers of train-
ing images were used. Although the MAP and the VB methods
had almost the same recognition rates, the VB method obtained
slightly better recognition rates when two training images were
used. These results suggest that the Bayesian approach mitigated
the over-fitting problem and achieved higher generalization ability
than the ML method. In addition, we confirmed that the use of a
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Fig. 4. Recognition rate (training data are six to two images)
(a) 8 × 8 states, (b) 24 × 24 states, (c) 40 × 40 states, and
(d) 56 × 56 states

prior distribution was more effective than the marginalization of
model parameters in this task.

5. CONCLUSION
This paper proposed image recognition based on SL2D-HMMs us-
ing the VB method. The face recognition experiments were per-
formed on the XM2VTS database. The Bayesian criterion demon-
strated better recognition than the ML criterion in the experiments.
These results suggest that the Bayesian criterion is useful for appli-
cations of image recognition based on SL2D-HMMs. In addition,
we confirmed from these results that the use of prior distributions
was more effective than the marginalization of model parameters in
this task. We intend to apply the Bayesian criterion to image recog-
nition based on hidden Markov eigenface models, which integrate
SL2D-HMMs and factor analyzers, in future work.
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