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ABSTRACT

Recently, dictionary learned by sparse coding has been widely
adopted in image classification and has achieved competitive per-
formance. Sparse coding is capable of reducing the reconstruction
error in transforming low-level descriptors into compact mid-level
features. Nevertheless, dictionary learned by sparse coding does not
have the ability to distinguish different classes. That is to say, it is
not the optimum dictionary for the classification task. In this paper,
based on the global image statistics, a novel discriminant dictionary
learning method combining linear discriminant analysis with sparse
coding is proposed to obtain a more discriminative dictionary while
preserving its descriptive abilities and a block coordinate descent
algorithm is proposed to solve the optimization problem. Exper-
imental results show that our algorithm has capabilities to learn
dictionary with more discriminative power and achieves superior
performance.

Index Terms— Sparse coding, image classification, dictionary
learning, linear discriminant analysis

1. INTRODUCTION

Recently, image classification, which aims at associating images
with semantic labels automatically, has become quite a significant
topic. The typical framework adopted by the majority of existing im-
age classification systems is discriminative model [1, 2, 3, 4, 5, 6, 7].
Initially, bag of words model [7] (also called codebook or codeword,
i.e. dictionary), which treats an image as a collection of ”Visual
Words”, is the most commonly used method in image classification.
Although it achieves satisfactory results, bag of words model has
two drawbacks. One is that the spatial information for classification
is lost because of unordered ”Visual Words”, thus severely limiting
the classification performance. The other is that each feature only
corresponds to one word, so this hard decision will cause too large
reconstruction error. For the former, the spatial pyramid matching
method proposed by Lazebnik et al. [2] has achieved remarkable
success, and thus becomes an indispensable step for image classi-
fication. For the latter, in order to solve the visual word ambiguity,
Van Gemert et al. [3] suggested kernel-codebook, and Wang et al.
[6] recommended locality-constrained linear coding which utilizes
the linear combination of N-neighborhood bases to represent fea-
tures. Furthermore, Yang et al. [4] proposed sparse coding based
dictionary learning, which represents features by the sparse linear
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combination of several bases, and achieved state-of-the-art perfor-
mance.

However, the reconstruction error criterion takes effect mainly
in measuring the mapping expression when transforming low-level
descriptors into compact mid-level features. For the classification
task, merely abasing the reconstruction error is far from enough.
The optimum dictionary should have the ability to distinguish differ-
ent classes. Hence, Lazebnik et al. [8] incorporated discriminative
information by minimizing the loss of mutual information between
features and labels during the quantization step. Mairal et al. [9]
proposed a sparse coding based discriminative dictionary training
approach with respect to the sparse codes rather than the pooling
results, so it requires each code to be labeled, and ignores global
image statistics.

In this paper, to obtain a more discriminative dictionary while
preserving its descriptive abilities, we combine linear discriminant
analysis (LDA) with sparse coding. To be specific, the Fisher linear
discriminant analysis information is embedded as regularization ter-
m into the original objective function of the sparse coding method
so as to effectively reduce the within-class scatter as well as in-
creasing the between-class scatter. Based on this formula, a novel
block coordinate descent algorithm is proposed to solve the mini-
mization problem. Therein we try to optimize one single variable
at a time, and thus the closed-form solution furthest decreasing the
corresponding objective function is obtained based on the convexity
of a much simpler univariate parabolic function.

The rest of this paper are organized as follows. Section 2
overviews the framework and formulation of sparse coding based
image classification. How to incorporate the discriminant informa-
tion into the existing schematism and construct the corresponding
objective function is elaborated in Section 3. The solution to the
optimization problem of proposed objective function and the imple-
mentation of the algorithm are demonstrated in Section 4. Section
5 shows experimental results and analysis. Discussions and conclu-
sions are drawn in Section 6.

2. NOTATIONS AND RELATED WORK

This section firstly reviews the framework for image classification.
Then, some notations and formulae used throughout this paper are
illustrated.

2.1. Framework of sparse coding based image classification

The framework of sparse coding based image classification include
five major steps [4]: Feature extraction, Dictionary learning, Image
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coding, Pooling combined with spatial pyramid matching (SPM),
and classifier training. Figurel shows the flow chart of the detailed

framework.
Testing Images

Training Images
Extracting Fealures]—[ Sampling Features ] Extracting Features

|

s \

—

Image Coding Image Coding

Learning Dictionary

by Dictionary
v

SPM Pooling

Image

by Dictionary

SPM Pooling

Image
Representations

Representations

Training Classifier

|l Category Decision l

Fig. 1. The framework of sparse coding based image classification.
There are five major steps: Feature extraction; sparse coding for
dictionary learning; Image coding by dictionary; Pooling combined
with spatial pyramid matching; and classifier training. Obviously,
dictionary learning is the most important part and dominant the per-
formance of classification.

2.2. Notations and formulae for image classification

Let X € RP*¥ be the local descriptors randomly extracted from
training images for learning dictionary, D be the dimension of X,
and N be the number of samples in X . For classification task, Let C'
represent the number of classes, No represents the number of images
extracted from each class for learning dictionary and training classi-
fier, M represents the number of features randomly extracted from
each image for learning dictionary. Then we have N = C'x Ngx M.
B € RP*¥ s the dictionary, K is the size of the dictionary. S €
REXN is the local descriptors’ codes under given dictionary B.

In this paper, for the convenience of deriving the solution to the
ensuing discriminant sparse coding, we impose additional nonneg-
ativity constraint to the sparse codes. Then sparse coding can be
formulated as minimization of the following objective function:

f(B,S)
s.t. S

| X — BS|; + 28|, %)
0, ||Beill, =1,¥i=1,2,..., K

Y

Here A, and A, denote the n;, column and k;j row vectors of
matrix A, respectively. « is a regularization parameter to control the
tradeoff between fitting goodness and sparseness. Dictionary B can
be obtained by solving (1).

After obtaining the dictionary, for each image I, we assume that
X' € RP*" represents the features extracted from I, and S' ¢
REXL represents the corresponding sparse codes. Let f. and f,
denote coding and pooling operators, Z7 € R¥*! denotes the im-
age representation. Then the coding step and pooling step can be
formulated as:

S§'=fu(x"y  z'=f(8") @
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3. DISCRIMINANT SPARSE CODING

Although sparse coding algorithm can effectively reduce the recon-
struction error and has achieved competitive performance for image
classification, some other factors, such as within-class scatter and
between-class scatter should be also considered. Specifically, we
should take the strategy to debase the within-class scatter and in-
crease the between-class scatter.

3.1. Discriminant information

Let Z.; represent the 4., image in the ¢y, class. Then Z.; can be
written as follows,

M

1 )
Zei=5; > Sem 3)
m=1
Let Z. represent the mean vector in the c;p, class:

Zi- - 7z )

The within-class scatter Dy can be formulated as:

1 1 & T

The corresponding between-class scatter Dp is
1 & T 5—

Dp=——— Z.—Z, Z.—Z, 6
B= 0o E: E: ( 1) ( 1) (6)

c=1d=1

3.2. Proposed discriminant sparse coding algorithm

Elevating the between-class scatter and suppressing the within-class
scatter will undoubtedly improve the performance of classification.
In this paper, Dw and Dp are embedded into (1) as regularization
terms forming the following formula,

f(B,S) = | X — BS||;. + 20| S|, + BDw —vDs (1)
5.t.8 > 0,[|Baill, =1,Vi=1,2,.., K

where (3 and 7y are the regularization factors that adjust the weight of
within-class scatter and between-class scatter, respectively. In other
words, these parameters are used for balancing the trade-off between
the descriptive and discriminative abilities.

Using (5) and (6), (7) can be simplified as follows,

f(B,S) = |X — BS|% + 2a||S||, + pu x | SU||3
—pv x |SV|]% 4 pw x |SW], (®)
5.8 >0, |Ball,=1,Vi=1,2,... K

B B(C —1)+27C 27

~ PU = » PW = 5
NM N(N — NoM) N(N — NoM)
U e RV*WoxC) g the feature-image label matrix. If the feature
(i.e. the row index) belongs to the image (i.e. the column index),
the corresponding elements are set to 1; otherwise 0. V & RV*¢
represents the feature-class label matrix. Similarly, if the feature
(i.e. the row index) belongs to the class (i.e. the column index), the
corresponding elements are set to 1; otherwise 0. W € RV is a
vector with all elements 1.

Here, pu =



4. OPTIMIZATION OF THE OBJECTIVE FUNCTION

In this section, we focus on solving the minimization of objective
function (8). While this optimization problem is not jointly convex
in both S and B, itis separately convex in either S or B. So it can be
decoupled into the following two optimization subproblems which
can be solved by alternating minimizations. Finding the sparse codes
is as follows,

min f(8) = || X — BS|[} +20|S|, + pu x | SU|
—pv X ISV [ + pw x | SW . ©
Learning bases is as follows,

min f(B) = || X — BS||}. (10)
st.||Beill, = 1,¥i=1,2,... K

4.1. Finding sparse codes

The objective function in (9) can be rewritten as follows,

£(S) = Tr {XTX —2X"BS + STBTBS}

K N
+2aZZSkn+TT{SGST} 11

k=1n=1

where G = puUU" — poVVT + puWW7T. The objec-
tive function (11) in terms of Sy, reduces to (12) with B and
{Si]‘,i = 1, ...,K,j = 1, ceey N} /Skn fixed.

N
F(Skn) = Sin {1 +pu—pv+pw} + 28k GumSkm

m=1,m#n

K

Z B'B],,Sin —

1=1,1

+28kn (X'B],, +ap(12)

where pu — pv + pw = {B( o — 1) — 2~}, in this paper, we

set 8 = , so pu — pv + pw > 0. Thus f(Skn) is a parabola
which opens up. Based on the convexity and monotonic property of
parabolic function, it is not difficult to know that f(Skr) reaches
the minimum at the unique point.

Sin = max {Hin — o, 0} /(1 4 pu — pv + pw) (13)

N

m=1,m#n

K
where Hy,, = — > [B"B],,Sin+ [X"B],, —
1=1,l#k

4.2. Learning bases

Without the regularization term in (9) and additional constraints
n (10), the solution to S and B are dual in objective function
|X — BS||%. Hence, Vd€{1,2,...,D},k€{1,2,..., K}, with
{Bpg,p=1.2,....,D,9=1,2,....k } /Bak and S fixed, the constrained s-
ingle variable minimization problem of (10) has the closed-form so-
lution

K
[XSTLUC_ Z Bdl[SST]zk
1=1,1#k
By, = , (14)
BRI
B.k - B.k
1 Bexll,
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4.3. Overall algorithm

Discriminant sparse coding algorithm for learning dictionary is
shown in Algorithm 1. 1 € R¥*¥ is a square matrix with all ele-
ments 1, I € RE*X is the identity matrix, and ® indicates element
dot product.

Algorithm 1 Fast algorithm for sparse coding

Require: Data matrix X € RP*N label matrix U €

RY*XNoxC) 3/ ¢ RNXC Wy ¢ RNXL parameter o, 3,
and K

I: B + rand(D,K),Be; = Bei

. [[Bekll

B B+27)C -8B

Pu=3rN s PV=NV WNOM)7 PU=xw_ NOM)

. iteration = 0

: while (f(iteration)— f(iteration+1))/f (iteration) >1le—6
do

Vk,S <« zeros(K,N),

[SSIN )

4:  dqteration < iteration + 1

5. Update S:

6: Compute A= (B"B)®(1—-I)and E=B"X

7: for k = 1;k < K;k++ do

8: Pi<reshape(repmat(puxsum(reshape(Sie, M, N X
), M, 1),1,N)

9: P; + reshape(repmat(pv x sum(reshape(Ske, M X
No, C))7 M x No, 1)7 1, N)

10: P3<—pw x sum(Ske)

11: Py (pu — pv+ pw) X Ske

12: Sre= max{Ek. —AreS—P1+P3—P3+Ps—a 0}/(

pu — pv + pw)
13: end for
14:  Update B:
15  Compute G = (SST)® (1-I),W = XS”
16: for k = 1;:k %VK;k—F—ggo
ok — ok

7 Ber [Wer — BGakl|,
18:  end for
19:  Update the objective function:
20 f = X~ BS|2 + 20]S], + pu x [|SU|% — pv x

ISV I +pw x |SW
21: end while
22: return B, and S

5. EXPERIMENTAL RESULTS

In this section, our discriminant sparse coding (DSC) algorithm is
evaluated on three benchmark datasets, including 8 sports event
dataset [10], 15 natural scene dataset [2, 11, 12], and Caltech101
dataset [13]. For each dataset, the data are randomly split into
training set and testing set based on published protocols. To make
the results more convincing, the experimental process is repeated 8
times, the mean and standard deviation of the classification accuracy
are recorded. The images are resized with a maximum side 300
pixels. As for the image features, the image patches are densely
sampled from each image with step size 8 pixels and side length
16 pixels, and SIFT descriptors are adopted with grid size 4 x 4
to form 128 dimensional feature vectors. The features used for
learning dictionary are randomly sampled from all training images
and the amount of them is about 120, 000. The dictionary size is
1024. Spatial pyramid matching kernel is embedded in the coding
step (The image is split into three layers, each of which has 1, 4,



Table 1. Image classification results on three datasets

DataSets event8(%) Caltech101(%) scene(%)
Li[10] 73.4

Wu[1] 81.87(1.14) | 61.00(0.90) | 82.02(0.54)
Lazebnik([2] 64.40(0.80) | 81.40(0.50)
van Gemert[3] 64.10(1.50) | 76.70(0.40)
Yang[4] 66.68(1.66) | 73.92(1.03)
Boureau[5] 70.30(1.3) | 83.20(0.40)
DSC 83.72(1.68) 71.96(0.83) 84.21(0.44)

and 16 segments, respectively). The pooling strategy is average.
Histogram Intersection Kernel SVM classifier and one against all
multi-classification strategy are adopted, and LIBSVM [14] package
is used.

There are three parameters «, [, v in the objective function.
The parameter « is used for adjusting the sparsity of the codes; the
bigger « is, the sparser the codes are. The best performance in [4] is
achieved when « is set to 0.15. We follow the same setting of 0.15.
The parameters 5 and ~y are used for adjusting the within-class scat-
ter and the between-class scatter, respectively. In our experiment,
we make 3 = v = 0.3 X N. The extra multiplication by the number
of features N is introduced to keep the fitting and discriminant terms
within the same order of magnitude.

For 8 sports event dataset, there are 8 sports event classes with
totally 1579 images. 70 images per class are randomly selected as
the training data, and 60 images per class for testing. For 15 natural
scene dataset, there are 15 classes of indoor or outdoor scene with
totally 4485 images. The number of images in each class varies
from 200 to 400, and the image size is about 300 x 300. 100 images
per class are randomly selected as the training data, and the rest
for testing. For Caltech101 dataset, there are 102 classes, one of
which is the background. After removing the background class, the
rest 101 classes are used for our classification. These 101 classes
contain 8677 images, and the number of images in each class varies
from 31 to 800. 30 images per class are randomly selected as the
training data, and the rest for testing (with a maximum of 50 images
per class).

Table 1 lists the comparisons of DSC with existig work for image
classification currently. Our proposed algorithm achieves superior
accuracy under similar conditions (such as the same features, the
same size of dictionary, the same pooling strategy, and the like). It is
worth to note that the conditions (dictionary with 1024 bases + SPM
+ average pooling + HIK-kernel SVM) used by Boureau [5] are al-
most the same as ours, but our DSC algorithm outperform Boureau’s
algorithm 1.66% and 1.01% on Caltech101 and 15 natural scene,
respectively. The probable reason for more accuracy improvement
on Caltech101 is that for Caltech101 dataset, the within-class differ-
ence of image patches is higher than 15 natural scene dataset, after
transforming to corresponding sparse codes, this phenomenon still
exists for traditional sparse coding algorithm.

6. CONCLUSION

In this paper, we have proposed a novel sparse coding algorithm for
image classification. The algorithm incorporates linear discriminant
analysis information into sparse coding algorithm so as to reduce the
within-class scatter and increase the between-class scatter. Based
on the convexity and monotonic property of parabolic function, the
algorithm directly obtains the closed-form solution to the separa-
ble optimization subproblems. The enhanced discriminative ability
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makes it more congruent with the classification task. Experimental
results on three benchmark datasets show that our algorithm is supe-
rior to other image classification algorithms.

In the future, the evaluation of proposed algorithm on larger
dataset will be carried out. We also plan to shift to the max pool-
ing strategy and design corresponding discriminant sparse coding
algorithm.

(1]

(2]

(3]

(4]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

7. REFERENCES

J. Wu and J.M. Rehg, “Beyond the euclidean distance: Cre-
ating effective visual codebooks using the histogram intersec-
tion kernel,” in Proceedings of the 12th ICCV. IEEE, 2009, pp.
630-637.

S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of fea-
tures: Spatial pyramid matching for recognizing natural scene
categories,” in Proceedings of the 19th CVPR. IEEE, 2006,
vol. 2, pp. 2169-2178.

J.C. van Gemert, C.J. Veenman, A.W.M. Smeulders, and J.M.
Geusebroek, “Visual word ambiguity,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 32, no. 7, pp.
1271-1283, 2010.

J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyra-
mid matching using sparse coding for image classification,” in
Proceedings of the 22nd CVPR. IEEE, 2009, pp. 1794-1801.
Y.L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning
mid-level features for recognition,” in Proceedings of the 23rd
CVPR. IEEE, 2010, pp. 2559-2566.

J. Wang, J. Yang, K. Yu, E. Lv, T. Huang, and Y. Gong,
“Locality-constrained linear coding for image classification,”
in Proceedings of the 23rd CVPR. IEEE, 2010, pp. 3360-3367.

K. Grauman and T. Darrell, “The pyramid match kernel: Dis-
criminative classification with sets of image features,” in Pro-
ceedings of the 10th ICCV. IEEE, 2005, pp. 1458-1465.

S. Lazebnik and M. Raginsky, “Supervised learning of quantiz-
er codebooks by information loss minimization,” /EEE trans-
actions on pattern analysis and machine intelligence, vol. 31,
no. 7, pp. 1294-1309, 2008.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Su-
pervised dictionary learning,” in Proceedings of NIPS, 2008,
pp. 1033-1040.

LJ. Liand EF. Li, “What, where and who? classifying events
by scene and object recognition,” in Proceedings of the 11th
ICCV.IEEE, 2007, pp. 1-8.

EF. Li and P. Perona, “A bayesian hierarchical model for learn-
ing natural scene categories,” in Proceedings of the 18th CVPR.
IEEE, 2005, vol. 2, pp. 524-531.

A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” International
Journal of Computer Vision, vol. 42, no. 3, pp. 145-175, 2001.

EF. Li, R. Fergus, and P. Perona, “Learning generative visual
models from few training examples: An incremental bayesian
approach tested on 101 object categories,” in Workshop of the
17th CVPR. 1EEE, 2004, p. 178.

Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: A library
for support vector machines,” ACM Transactions on Intelligent
Systems and Technology, vol. 2, pp. 27:1-27:27, 2011.



