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ABSTRACT

A means is proposed of extracting participant-pair interaction mea-
sures from a binary representation of behavior in multi-party conver-
sation, by leveraging an extension of transfer entropy. The technique
allows for the inexpensive construction of sociomatrices, requiring
only a minimum of detection technology. It is expected that the
method will tractably enable the application of social network anal-
ysis to conversational behavior mined from very large collections of
unannotated audio.

Index Terms— Turn-taking, N -gram models, social network
analysis, cross entropy, transfer entropy, influence.

1. INTRODUCTION

Social network analysis (SNA) has become an important tool in to-
day’s society [1]. It has been used to make inferences about occupa-
tional mobility, national prestige, adoption of innovation, and other
many-actor concepts. SNA reasoning involves the manipulation of
matrices of quantified pair-wise relations, known as sociomatrices.

Sociomatrix computation, however, is generally considered to
lie outside of SNA; a result of this is that SNA is most often applied
to datasets in which inter-actor relations are overt or easy to identify
(e.g., how frequently two people email each other). For data in which
this is not the case, influence may be hypothesized when actors are
observed to behave like other actors did before them [2]. However,
in multi-actor scenarios, in which it is hard to automatically identify
the intended recipient of any particular action, in which mimicry is
not a necessary consequence of influence, and in which the space of
possible actions is large, measuring influence is more challenging.
Multi-party conversation is a good example of such a scenario type.

Words may seem to be a natural choice of conversational action,
but their usage is dependent on language, domain, and interaction
style. Choosing them as actions for analysis would partition con-
versational corpora into small but homogenous subgroups, and un-
dermine the potential of applying SNA to conversations in a general
sense. Some researchers have therefore turned to records of binary
speech activity, or chronograms, as records of action. A chronogram
elides the words and retains only the timing information of when
individual participants were speaking. As the output of speech ac-
tivity detection or diarization systems, chronograms are readily com-
putable and clearly independent of the availability and performance
of higher-level linguistic processing components. First-order influ-
ence in two-party conversations has been explored by studying how
one participant’s immediately preceding speech activity state helps
to predict another’s current speech activity state [3]. For four-party
conversation, [4] proposed to model each individual’s influence on
an intervening “group state”, and the group’s influence on each indi-
vidual, but did not consider direct individual-to-individual relations.

The current work proposes transfer cross entropy as a measure
of pair-wise influence in conversations with arbitrary numbers of
participants, and arbitrarily long Markovian truncations of history.
The primary goal is to describe how to compute the measure from
any conversation, allowing for the subsequent application of SNA
methods across conversations of vastly different characteristics. The
work’s secondary goal is to report on a peculiar finding: when ap-
plied to chronograms of conversations by members of a research in-
stitute, using a stochastic model of turn-taking, the proposed tech-
nique appears to implicitly rank conversants by self-reported educa-
tion level (a measure of organizational seniority [5]).

2. DATA

The ICSI Meeting Corpus [6] is used to demonstrate the proposed
techniques. The corpus is unique in that it contains longitudinal
recordings of the same groups of participants, meeting to talk about
work; the meetings, it has been claimed, would have occurred even
if they were not recorded. This work focuses on one group (Bmr)
which met to discus the corpus collection project itself. 29 meetings
of this group are available; they involve a total of 15 participants,
between 3 and 9 per meeting.

3. EXAMPLE OF AN ANNOTATED RELATION

As an illustration of sociomatrix construction, in a setting in which
a large amount of manually annotated data is available, consider the
concept of the adjacency pair (AP). An AP is a conversation anal-
ysis construct in which one speaker’s turn forms a “part A” and a
subsequent speaker’s turn forms a “part B”. The two parts may be a
question and an answer, or a greeting and a “return” greeting, etc.

A sociomatrix X is an N × N matrix, where N is the number
of participants in the population under study. X ≡ (xij), and xij is
a directed relation from participant i to participant j. xij need not
equal xji, leading to an asymmetric X; xii is left undefined.

In multi-party conversation, an X defined by adjacency de-
scribes grounding, and may additionally describe preferred infor-
mation exchange partners or merely compliance with social norms.
Because the ICSI Meeting Corpus contains annotated APs, it is easy
to assign to xij the number of APs in which participant i provides
the “part A” of the AP while participant j provides the “part B”,
normalized by the total time of all Bmr meetings in which both par-
ticipants took part. A sociogram, or directed graph, of X is shown
in Figure 1. To improve visualization, only those xij are shown as
arcs whose values exceed μ + σ, where μ and σ are the global mean
and standard deviation over all xij that are not undefined1.

1xij is considered undefined if there are no conversations in which i and
j both participated.
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Fig. 1. A directed sociogram showing the dichotomous relation of
conversational adjacency. Nodes placed by rank of frequency of
“part A” production (along horizontal direction) and of “part B” pro-
duction (along vertical direction).

What Figure 1 shows is that, once the xij are thresholded us-
ing μ + σ, the remaining arcs occur in pairs (the dichotomous rela-
tion thus produced is — somewhat surprisingly — symmetric after
all). This illustrates that participants exchange “part A” and “part B”
roles within dyads: they are more likely to direct their “part As” to
those participants who directed to them their own “part As”. Ad-
jacency is not uniform across participants; particularly strong ties
identify cliques of participants who tend to talk with one another
more than with others. For example, the two female group mem-
bers, fe008 and fe016, appear to prefer adjacency pairing with
members me025 and me011, respectively.

Although automatic inference of APs has been attempted [7], it
relies not only on automatic speech/non-speech segmentation, but
also on automatic speech recognition, automatic dialog act segmen-
tation and classification, and potentially on prosodic analysis. This
makes the process difficult to apply efficiently for very large collec-
tions of conversations. Also, it is currently limited to domains and
languages for which these technologies are mature.

4. TRANSFER CROSS ENTROPY IN CHRONOGRAMS

4.1. Chronogram Construction

A speech/non-speech chronogram Q of any conversation [8], as
commonly understood, is the speech/non-speech segmentation of all
K participants to that conversation, discretized at a constant frame
step and frame size, and time-aligned. The frame step used here
is 100 ms, representing the very shortest verbal productions in the
ICSI Meeting Corpus. The resulting Q is a Markov random field,
a matrix ∈ {�, �}K×T . � and � are the absence and presence of
speech activity, and T is the number of frames. The tth column of

Q, qt, is the vector concatenation of the states of all parties.

4.2. Smoothing Coupled n-Gram Models

Q is modeled as the vector-valued output of a Markov process. A
model Θ provides the likelihood of Q,

PΘ (Q ) =
TY

t=1

PΘ (qt | . . . ,qt−1 ) , (1)

where the ellipsis represents qt−2 and earlier emissions, reflecting
the order of the Markov process. The conditioning context is sub-
sequently denoted as qt−τ

t−1
, where τ is the number of frames con-

sidered. Θ is commonly known as a stochastic turn-taking model
[9, 10]. As elsewhere, it is assumed that the behavior of all partici-
pants is conditionally independent (CI), given their joint behavior in
qt−τ

t−1
; each term on the right-hand side of Equation 1 is thus equal to

PΘ

`
qt |q

t−τ
t−1

´
=

KY

k=1

PΘ

`
qt [k] |qt−τ

t−1

´
. (2)

Square brackets index participants.
Although in principle separate models can be inferred for each

participant, conditioned on the behavior of specific interlocutors, for
computational simplicity the current work makes use of a single
model, for all participants, given a collapsed single-scalar descrip-
tion of the conditioning context per history frame. For the joint ac-
tivity qt−τ , that scalar is denoted ‖Ck · qt−τ‖, where Ck is the
K × K identity matrix with the kth column removed, and ‖ · ‖ is
the number of entries in the resulting dot product which are �. In
this way, ‖Ck ·qt−τ‖ denotes the number of interlocutors of the kth
participant which are in the � state at instant t − τ , for some finite
τ . A ceiling is applied on this quantity, equal to Kmax − 1, where
Kmax is a parameter to be estimated.

The factors on the right-hand side of Equation 2 then become

PΘ

`
qt [k] |qt−τ

t−1

´ .
= PΘ

`
qt [k] | {q [k] , ‖Ckq‖}

t−τ

t−1

´

leading to an n-gram model with n = 2τ + 1.
As elsewhere in n-gram modeling, smoothing is employed

during model estimation. In this particular setting, since the sym-
bol space consists only of � and �, the majority of smoothing
techniques used for language modeling (where large Zipf’s-law-
compliant vocabularies are assumed) are not quite appropriate.
Instead, the general and recursive Jelinek-Mercer interpolation [11]
is used, with the history-dependent smoothing parameter

λ
`
h

t−τ
t−1

´
=

C
`
ht−τ

t−1

´

C
`
ht−τ

t−1

´
+ ρ

, (3)

where ht−τ
t−1

is a particular history and C
`
ht−τ

t−1

´
its count, dependent

on a global relevance parameter ρ. Extensive testing reveals that
values of approximately 200 for this parameter (for the model orders
in this work) lead to highest likelihoods for unseen chronograms.
Under the said smoothing arrangement, the effect of extending the
conditioning context is shown in Figure 2.

What can be seen from this figure is that longer conditioning
histories are beneficial. Furthermore, it is obvious that taking inter-
locutor behavior into account (by allowing Kmax > 1) is also ben-
eficial: the same cross-entropies are observed using a Kmax = 2
model, at τ = 2, as are observed at τ = 5 with the model for which
Kmax = 1 (which ignores interlocutors). Finally, it can be seen that
Kmax = 3 is only negligibly better than Kmax = 2. This suggests
that, on average, it is not important to know how many interlocutors
are speaking prior to t, only whether zero or at-least-one are.
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Fig. 2. Agglomerated leave-one-meeting-out cross-entropy rate (in
bits per frame, along y-axis) as a function of the duration of the
conditioning history (in 100-ms frames, along x-axis).

4.3. What n-Gram Models Learn

Given the behavior of models in Figure 2, it is of interest in this work
to understand why cross entropy reductions accompany a sensitivity
to interlocutor behavior. Some light is shed on this matter in Fig-
ure 3, demonstrating the impact of conditioning using interlocutors’
states at t − 1 on the learned model probabilities.

P (�|�, 1) = 85.5%

P (�|�, > 2) = 84.1%

P (�|�, 0) = 3.1%

P (�|�, > 2) = 1.1%

P (�|�, 1) = 0.4%

P (�|�, 0) = 92.0%

P (�|�) = 1.3%

P (�|�) = 91.1%

P (�) = 12.4%

Fig. 3. Unigram P (qt [k]), uncoupled bigram P (qt [k] |qt−1 [k]),
and coupled bigram P (qt [k] |qt−1 [k] , ‖Ckqt−1‖) probabilities of
speaking (�) in the ICSI corpus, in ascending order from top to bot-
tom.

The figure depicts an key aspect of conversational speech de-
ployment. When someone is not already speaking, their probabil-
ity of beginning to do so is largest when the number of speaking
interlocutors is zero (3.1%), and smallest when that number is one
(0.4%). When more than one interlocutor is speaking, the probability
of any non-speaking participant starts speaking (1.1%) is larger than
when only one interlocutor is speaking (0.4%). When a participant is
already speaking, on the other hand, their probability of continuing
to do so monotonically decreases as the number of speaking inter-
locutors increases (92.0%, 85.5%, 84.1%). Evidently, one-at-a-time
speaking is the most stable joint configuration.

4.4. Measuring Influence

The turn-taking model descrinbed above can now be used to measure
the relationship between any pair of participants.

It should be noted that the likelihood of any row k of a particular
Q, corresponding to the behavior of participant k, is given by Equa-
tion 2, assuming that Θ encodes the norms of speech deployment
[10] in the corpus. Some rows can be expected to be more likely

than others, depending on how closely the participants in question
conform to those norms. To quantify the influence that an interlocu-
tor j has on k, the jth row is eliminated from all instants of the
conditioning history, when estimating the likelihood of the kth row.
If j in fact conditions k’s behavior, then this modified cross entropy
will be higher than that in Equation 2, in which j’s row is left un-
touched. That is, it will become harder to predict k’s behavior, and
more bits will be necessary to encode the kth row.

More consisely, the proposed measure of influence of j on k,
Inflj→k, is hereby given as

Inflj→k ≡ −
TX

t=1

log PΘ

`
qt [k] | {q [k] , ‖Ckjq‖}

t−τ

t−1

´
(4)

+
TX

t=1

log PΘ

`
qt [k] | {q [k] , ‖Ckq‖}

t−τ

t−1

´
,

where Ckj is identical to Ck, except both the kth and the jth column
are eliminated, rather than just the kth.

Inspection of Equation 4 reveals that it is a cross entropy rate,
which can be rewritten as

Inflj→k ≡ −
X

PML

`
qt [k] , {q [k] , ‖Ckq‖}

t−τ

t−1

´
(5)

× log
PΘ

`
qt [k] | {q [k] , ‖Ckjq‖}

t−τ

t−1

´

PΘ

`
qt [k] | {q [k] , ‖Ckq‖}

t−τ

t−1

´ ,

where the sum is over all joint events inside PML (·), their maximum
likelihood (ML) estimate in the chronogram Q under study.

The cross entropy rate in Equation 5 is a conditional cross en-
tropy rate; the elimination of some conditioning information — in
the form of the jth row from t− 1 to t− τ — makes it a conditional
transfer cross entropy (an extension of transfer entropy [12]). Values
above zero indicate the cost, in number of bits per frame, incurred
by assuming that j is irrelevant to the prediction of the kth row. Note
that the conditional transfer cross entropy can be negative, since par-
ticipants may deviate from the global norm Θ.

4.5. Sociomatrix Computation

Next, the required sociomatrix X is computed. It should be noted
that, in any chronogram, a participant j may appear to influence par-
ticipant k under the proposed model Θ in three main ways. First,
if j merely speaks a lot, then j will eliminate putative opportunities
for k to speak (cf. Figure 3). Second, j may frequently pause within
utterance. This could render two interlocutors, j and j′, have un-
equal influence even if their total time spent in � is identical, and
would suggest that participants orient themselves not so much to the
production of speech by others at any specific instant, but perhaps to
production in the vicinity of that instant. Third, and of most inter-
est here, participants may wish to follow specific interlocutors, once
those interlocutors are finished, or almost finished, speaking.

To eliminate the first effect, xij , the entries of sociomatrix X,
are assigned the values

xij ≡
Inflj→k

PML (qt [j] = �)
. (6)

The equation normalizes the influence Inflj→k by the amount of time
that j is speaking in Q. The second aspect is not addressed in the
current work, treating intra-utterance pausing as noise. The proposed
form of Equation 6 is therefore assumed to grossly account for the
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Fig. 4. A directed sociogram showing the dichotomous relation of
“Inflj→k normalized by the speaking time of j” across speech/non-
speech chronograms. Nodes placed by rank of average influence
(along horizontal direction) and of average influenceabilty (along
vertical direction).

third aspect described above, namely preference for following spe-
cific interlocutors, and for doing so carefully in order to conform to
the turn-taking norms described by model Θ.

Figure 4 suggests that closely dovetailing speech produc-
tion with the turn terminations of specific interlocutors is not a
symmetric relation in general. Only the pairs (me013,me022),
(me018,me026) and (mn014,mn005) have arcs which survive
thresholding in both directions. The main observation is that partic-
ipants in the top left corner of the figure are helpful in predicting the
behavior of participants in the bottom right. It turns out that only
the five right-most participants did not have a doctorate at the time
of recording (as evidenced in the corpus meta-data); meanwhile,
me013, at the top left, was the only professor in the Bmr meetings.
Some observations related to this can be found in [5].

5. DISCUSSION

The technique proposed in this work has not been quantitatively eval-
uated on any particular task. A most natural candidate would be
validation against human-produced self-reports about pair-wise re-
lationships with other conversants. To the author’s knowledge, no
such annotated corpus has yet been collected and made available.

It should be noted that the presented modeling techniques can
operate on any binary chronogram, of any type or subset of vocal ac-
tivity. It is straightforward to extend the models to more choices than
{�, �}. It is also possible to construct predictors of one chrono-
gram type using other chronogram types for interlocutors. In short,
the current work should be treated as merely a preliminary effort.
Easy-to-construct relations include the conditioning of laughter on
laughter, which may indicate “liking” [13].

6. CONCLUSIONS

A technique has been presented for inferring dichotomous sociomet-
ric relations from collections of simple representations of individual
multi-party conversations. These representations require only au-
tomatic vocal activity recognition, rather than conventional linguis-
tic processing involving speech recognition, parsing, and discourse
structure analysis. The inference technique is therefore readily de-
ployable, today. The current work has argued for the technique’s the-
oretical soundness, has presented some preliminary results, and has
visually explored an example of a dichotomous relation. The appli-
cations of the technique to social psychology and to social network
media appear promising, and the technique is sufficiently mature for
empirical validation using manually labeled relations.
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