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ABSTRACT
Gaussian hidden variable graphical models are powerful tools

to describe high-dimensional data; they capture dependencies

between observed (Gaussian) variables by introducing a suit-

able number of hidden variables. However, such models are

only applicable to Gaussian data. Moreover, they are sensi-

tive to the choice of certain regularization parameters. In this

paper, (1) copula Gaussian hidden variable graphical mod-

els are introduced, which extend Gaussian hidden variable

graphical models to non-Gaussian data; (2) the sparsity pat-

tern of the hidden variable graphical model is learned via sta-

bility selection, which leads to more stable results than cross-

validation and other methods to select the regularization pa-

rameters. The proposed methods are validated on synthetic

and real data.

Index Terms— Gaussian copula, hidden variable graphi-

cal model, stability selection, bioinformatics

1. INTRODUCTION

Sparse graphical models (see, e.g., [1]) provide an effective

way to capture statistical structure in high-dimensional data,

such as gene expression data, multi-electrode brain record-

ings, and stock market data. A sparse graph displays the most

significant interactions between variables (e.g., genes, brain

areas, stocks), and may help to interpret the data.

In practice, it is quite common that data is unavailable for

some relevant variables. For instance, one typically measures

the expression of a limited subset of genes, chosen among the

large number of genes of an organism; the observed genes

may be strongly affected by genes that have not been mea-

sured. The latter may then be treated as hidden variables in a

statistical model, providing a simple explanation for the sta-

tistical relations between the observed genes.

Therefore, sparse graphical models with hidden variables

are quite powerful models for a large variety of real-life

datasets. When the observed variables Zo and hidden vari-

ables Zh are jointly Gaussian distributed, the structure of

the graphical model can be defined by the precision ma-

trix (inverse covariance matrix) of the observed and hidden

variables. Recently, Chandraskaran et al. [2] decomposed

the (marginal) precision matrix of Zo into a sparse matrix

Ko (conditional precision matrix) and a low-rank matrix L,

which describes the coupling between the observed and hid-

den variables. The conditional graphical model Ko and the

number of hidden variables (rank of L) are inferred by solving

a convex regularized maximum-likelihood problem. The con-

ditional precision matrix Ko is represented as a graph, where

nodes i and j are connected by an edge iff the corresponding

element (i, j) in Ko is non-zero. That graph visualizes the

dependence among the observed variables, conditioned on

the hidden variables.

Obviously, Gaussian hidden variable graphical models

(GHVGM) are limited to Gaussian data. In this paper, we

extend GHVGM to non-Gaussian data by means of Gaussian

copulas [3], referred to as copula Gaussian hidden variable

graphical model (CGHVGM).

Another issue with the GHVGM is the selection of the

regularization/penalty parameters, which determine the re-

sulting sparsity pattern of Ko and rank of L. Standard ap-

proaches for regularization selection, including cross valida-

tion (cv), Akaike’s information criterion (AIC), and Bayesian

information criterion (BIC), are known to overfit the data,

and they typically result in graphs that are too dense [4].

In this paper, we circumvent the delicate issue of regular-

ization selection by first learning the graph structure and next

inferring the parameters. Specifically, stability selection [5]

is used to learn the structure (sparsity pattern) of Ko. We fur-

ther specify Ko and L by solving a convex problem subject

to the structure constraints. The estimated number of hidden

variables equals to the rank of L.

We apply our model (CGHVGM) to non-Gaussian syn-

thetic and real data (cell signaling data). The CGHVGM is

able to recover the number of hidden variables and the con-

ditional graph Ko, in contrast to other related models. Inter-

estingly, the GHVGM dramatically failed for both datasets,

presumably because it is not intended for non-Gaussian data.

This paper is organized as follows. In Section 2, we first

review the copula Gaussian graphical model and the Gaussian

hidden variable graphical model, and next we present the pro-

posed copula Gaussian hidden variable graphical model. In

Section 3, we explain how we learn the structure and param-

eters of the proposed model. In Section 4, we assess the pro-

posed model and benchmark it with other models, by means

of synthetic and real data. In Section 5, we offer concluding

remarks.
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2. GRAPHICAL MODELS

In the following, we briefly describe the copula Gaussian

graphical model, the Gaussian hidden variable graphical

model, and the proposed copula Gaussian hidden variable

graphical model.

2.1. Copula Gaussian Graphical Model

We denote the observed non-Gaussian variables and hidden

Gaussian variables as Y1, . . . , YP and Z1, . . . , ZP respec-

tively. A Gaussian copula graphical model is defined as [3]:

Z ∼ N (0,K−1) (1)

Yk = F−1
k (Φ(Zk)), (2)

where K is the precision matrix whose inverse (the covari-

ance matrix) has normalized diagonal, Φ is the CDF (cumu-

lative distribution function) of the standard Gaussian distribu-

tion, and Fk is the CDF of Yk. The latter is often approxi-

mated by the empirical distributions F̂k. Note that F−1
k is the

pseudo-inverse of Fk, which is defined as:

F−1(y) = inf
x∈X

{F (x) ≥ y}. (3)

2.2. Gaussian Hidden Variable Graphical Model

Suppose we have Gaussian distributed observed variables Zo

and hidden variables Zh. The joint precision matrix K(o h)

associated with these variables is given by:

K(o h) =

[
Ko Ko,h

Kh,o Kh

]
. (4)

According to Schur complement, the marginalized precision

matrix K̃o of Zo can be written as:

K̃o = Ko −Ko,hK
−1
h Kh,o = Ko − L, (5)

with product matrix L = Ko,hK
−1
h Kh,o. Those two com-

ponents have their own properties [2]: Ko is the supposedly

sparse conditional precision matrix of Zo, conditioned on Zh;

the product matrix L summarizes the effect of marginalization

over the hidden variables. The rank of that matrix (equal to

the number of hidden variables Zh) is low, since the number

of hidden variables is supposed to be small.

Given i.i.d. samples of Zo, our objective is to estimate Ko

and L; we are especially interested in the rank of L, since it

equals the number of hidden variables Zh. Those matrices

may be recovered by solving the convex relaxation [2]:

(K̂o, L̂) = argmin
Ko,L

trace((Ko − L)Σo)− log det(Ko − L)

+ λ(γ‖Ko‖1 + trace(L)), (6)

where K̂o and L̂ are the estimates of Ko and L respectively,

and Σo is the empirical marginal covariance of Zo. The con-

vex problem (6) can be solved efficiently by the Newton-CG

primal proximal point algorithm [6]. To recover the correct

matrices Ko and L, the parameters λ and γ need to be chosen

appropriately, which is a critical issue that will be addressed

in Section 3.

2.3. Copula Gaussian Hidden Variable Graphical Model

The observed (continuous) variables Y are non-Gaussian, and

each of them is associated with a Gaussian distributed hidden

variable Zo, as in the copula Gaussian model. However, be-

sides the hidden variables Zo, there exist several hidden vari-

ables Zh that are not associated with observed variables. In

the graphical model, the nodes Zh are only connected to hid-

den variables; they are not connected to observed variables Y .

In other words, the variables Y and Zo constitute a Gaussian

copula graphical model, while the variables Zo and Zh form a

Gaussian hidden variable graphical model; together, the vari-

ables (Y , Zo, Zh) form a copula Gaussian hidden variable

graphical model with associated conditional precision matrix

Ko and product matrix L (cf. (5)).

Given i.i.d. samples of the non-Gaussian variables Y , we

wish to infer the conditional precision matrix Ko of Zo (con-

ditioned on Zh), and the product matrix L.

As a first step, we transform the non-Gaussian observed

variables Y into Gaussian distributed hidden variables Zo (as-

sociated with the observed variables Y ):

Zok = Φ−1(F̂k(Yk)), (7)

where Φ is the CDF of the standard Gaussian distribution and

F̂k is the empirical CDF of Yk. As a result, we are dealing

with Gaussian variables Zo which together with Zh constitute

a GHVGM.

In the second step, we follow the procedure of (6) to infer

the sparse conditional precision matrix Ko of Zo and the low-

rank product matrix L. Also here, of course, we need to pay

special attention to the parameters λ and γ, which will be the

subject of Section 3.

3. LEARNING AND INFERENCE

A suitable choice of regularization parameters λ and γ in (6)

can produce the graphical model with true sparsity pattern

of Ko. However, standard procedures for selecting λ and γ
are known to overfit the data and result in graphs that are too

dense [4]. As an alternative, we employ a two-step procedure

of structure learning and parameter learning. Stability selec-

tion [5] is used for structure learning, resulting in the sparsity

pattern of Ko; constrained by this inferred sparsity pattern, we

then infer the parameters by solving a problem similar to (6).

3.1. Structure Learning

We use the stability selection procedure [5] to infer the spar-

sity pattern of the conditional precision matrix Ko, from N
i.i.d. samples S of Y ∈ R

P (or Zo ∈ R
P ).
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First, M subsets S1, S2, . . . , SM are randomly drawn

without replacement from the dataset, each of size �N/2�.

Second, we select a range of λ and γ (cf. (6)). Now focus

on one pair of parameters (λ, γ) in that range. For each sub-

set Sm (for m = 1, . . . ,M), we estimate one precision ma-

trix Ko using (6), resulting in M precision matrices K1, . . . ,

KM . For each element (i, j) in the matrix Km, the number

of times it is non-zero (Km(i, j) �= 0) among the M matrices

is counted and divided by M ; as a result, we obtain the prob-

ability (stability) that this edge exists in the graphical model

associated with (λ, γ). By varying λ and γ through the chosen

range, we can draw a surface of the stability for each edge.

At last, we include edge (i, j) in the graphical model as-

sociated with Ko, if the probability of that edge, for at least

one pair (λ, γ) in the selected range, is larger than threshold

πthr [5]:

πthr =
p2

P (P − 1)E
+ 0.5. (8)

The parameter p is the average number of edges in the graphs

associated with each pair (λ, γ) in the selected range, inferred

from the entire dataset S through (6). E is the expected num-

ber of falsely selected edges.

We also applied a randomized approach suggested in [5].

When inferring the matrices Km, we divide the parameter

pair (λ, γ) by a random pair (α1, α2) (different for each sub-

set), where α1 and α2 are uniformly distributed on [0.2, 1]. In

the following, we will only report results for the randomized

approach, since it yields the best results.

3.2. Parameter Learning
The structure (sparsity pattern) of Ko has now been inferred,

and that helps us to estimate Ko and L; specifically, we solve

a problem similar to (6), where the l1 term is removed, and

the sparsity pattern is encoded by a large penalty σ on the

absolute value of zero elements in Ko:

(K̂o, L̂) = argmin
Ko,L

trace((Ko − L)Σo)− log det(Ko − L)

+ λ trace(L) + σ
∑

Ko(i,j)=0

|Ko(i, j)|. (9)

The parameter λ is selected as the mean of the λs in the cho-

sen range (the second step of stability selection) that generate

the same structure as Ko estimated by stability selection. The

number of hidden variables can be estimated easily by com-

puting the rank of L.

4. NUMERICAL RESULTS

We test our proposed graphical model and existing graphical

models on a synthetic and real data set.

4.1. Synthetic Data
We generate non-Gaussian synthetic data using the following

method:

1. Generate a random precision matrix by using the

method of [7], which mimics characteristics of real-

world biological networks. More specifically, we

first uniformly sample x1, ..., xn from a unit square.

The precision matrix is initialized as a unit matrix.

Next, we set the element K(i, j) = K(j, i) of pre-

cision matrix equal to ρ = 0.245 with probability

(
√
2π)−1 exp(−4‖xi − xj‖2), and equal to zero other-

wise.

2. Add a few variables and connect each of them to at least

80% of other variables (corresponding elements in pre-

cision matrix are non-zero).

3. Generate a Gaussian dataset corresponding to the above

precision matrix and discard all the samples of vari-

ables added in Step 2 (hidden variables).

4. Apply different types of copula to each variable (in-

cluding beta, exponential, chi-square copula), trans-

forming the Gaussian variables to (continuous) non-

Gaussian variables.

We apply our proposed graphical model to that data, in

particular, copula Gaussian hidden variable graphical model

selection with stability selection (CGHVGM with ss). We

also consider 6 other approaches including glasso [1], copula

glasso [7], Gaussian hidden variable graphical model inferred

by cross validation (GHVGM with cv), Gaussian hidden vari-

able graphical model with stability selection (GHVGM with

ss), and copula Gaussian hidden variable graphical model

selection with cross validation (CGHVGM with cv). We

evaluate those methods through various criteria including

precision, recall, F1-score, and number of parameters (Prm

No.). Precision is defined as the proportion of correctly

estimated edges to all the edges in the estimated graph; re-

call is defined as the proportion of successfully estimated

edges to all the edges in the true graph; F1-score is defined

as 2·precision·recall/(precision+recall), which is a weighted

average of the precision and recall.

The results for a 20-dimensional dataset are summarized

in Fig. 1 and Table 1.

Table 1. Quantitative comparison of different methods

Methods
Criteria

Precision Recall F1-score Prm No.

glasso 0.1195 0.9048 0.2111 179

copula glasso 0.1105 1.0000 0.1990 210

GHVGM with cv 0.1324 0.4286 0.2023 488

GHVGM with ss 0.0000 0.0000 0.0000 0

CGHVGM with cv 0.2877 1.0000 0.4468 173

CGHVGM with ss 0.8750 1.0000 0.9333 64

glasso(m) 1.0000 0.6737 0.8050 179

copula glasso(m) 1.0000 1.0000 1.0000 210

The results show that CGHVGM with ss achieves the

best performance with the least number of parameters.

The CGHVGM approach with cv generates a dense graph,

whereas GHVGM with ss produces graph without edges.
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(a) True graph (b) Glasso (c) Copula glasso (d) GHVGM(cv) (e) GHVGM(ss) (f) CGHVGM(cv) (g) CGHVGM(ss)

Fig. 1. Results of different methods on the 20-dimensional synthetic dataset

The rank of the inferred L in CGHVGM with ss equals to

the number of hidden variables. However, the rank estimated

using CGHVGM with cv is four times larger than the true

value, while GHVGM with cv yields a full-rank matrix L.

The glasso and copula glasso methods infer the marginal

precision matrix K̃o in (5), instead of the conditional preci-

sion matrix Ko. The results for that inference problem are

listed under glasso(m) and copula glasso(m) in Table 1, where

“m” refers to marginal. The performance of copula glasso

is the best, since glasso is only effective for Gaussian data.

However, the marginal precision matrix K̃o is much denser

than the conditional precision matrix Ko, and therefore, is a

more complicated model (more parameters involved).

4.2. Real Data

The dataset consists of the expression level of 11 proteins in

7466 cells [8]. Two proteins (PKA and PCA) seem to interact

with most of the 9 other proteins, and they can be considered

as “hubs” (see Fig. 2(a), indicated in yellow). We remove

those proteins from the dataset. The graphical models should

infer those two proteins as hidden variables.

We have verified that the data is non-Gaussian, and there-

fore, one would expect the copula Gaussian model with hid-

den variables to perform well on this dataset.

(a) True graph (b) Glasso (c) Copula glasso

(d) GHVGM with cv (e) CGHVGM with cv (f) CGHVGM with ss

Fig. 2. Results of different methods on the cell signaling data

The results are shown in Fig. 2. The undirected version of

theoretical analysis in [8] is regarded as the “true” graph. The

CGHVGM approach with cv overfits the data. Both glasso

and copula glasso are trying to estimate the marginalized

dense graph. GHVGM with cv generates an incorrect full

graph, and GHVGM with ss leads to a fully disconnected

graph. In contrast, the proposed method yields the most ac-

curate conditional graph. Moreover, the rank of the inferred

matrix L equals 2, which is indeed the true number of hidden

variables (PKA and PCA).

5. CONCLUSION

In this paper, we introduced the copula Gaussian graphi-

cal model with hidden variables; such model can provide a

simple description of high-dimensional non-Gaussian data,

where correlations can be captured through a few hidden vari-

ables. We used stability selection to learn the structure of the

model and inferred the parameters of model and the number

of hidden variables by solving a convex problem.
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