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ABSTRACT

There are many methods for decomposing signals into a sum
of amplitude and frequency modulated sinusoids. In this pa-
per we take a new estimation based approach. Identifying the
problem as ill-posed, we show how to regularize the solution
by imposing soft constraints on the amplitude and phase vari-
ables of the sinusoids. Estimation proceeds using a version of
Kalman smoothing. We evaluate the method on synthetic and
natural, clean and noisy signals, showing that it outperforms
previous decompositions, but at a higher computational cost.

Index Terms— frequency modulation, amplitude modu-
lation, frequency estimation, amplitude estimation, machine
learning

1. INTRODUCTION

Many engineering and scientific problems require a signal to
be decomposed into a sum of amplitude modulated and fre-
quency modulated sinusoids (AM-FM sinusoids) [1, 2]. Per-
haps the most popular decomposition of this type first filters
the signal and then demodulates the subbands, for example
using the Hilbert Transform. Despite its popularity, subband
demodulation often returns amplitudes and instantaneous fre-
quencies (IFs) which are poorly behaved [1]. The methods en-
counter additional problems when each component in the sig-
nal cannot be isolated into a single subband. Sinusoidal anal-
ysis addresses some of these deficiencies by tracking the sinu-
soidal components present in a signal using a set of heuristics
[3]. However, this analysis would benefit from an explicit
signal model that simplifies the heuristics and automates how
they should trade-off with one another.

We address these problems through an estimation based
approach. Recently we have shown how to fit a single AM-
FM sinusoid to a signal using probabilistic amplitude and fre-
quency demodulation (PAFD, [2]). Here we generalize PAFD
to the multi-sinusoid case. We begin by reinterpreting two ex-
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isting algorithms as probabilistic versions of subband demod-
ulation. This serves to motivate the new approach. We end
by evaluating the new method on synthetic and natural data,
in clean and noisy settings. The new approach is the most
accurate and robust, but it is also the most computationally
demanding.

2. SIMPLE ALGORITHMS FOR PAFD

In this section we reinterpret two existing algorithms as meth-
ods for fitting a signal yt with a sum of D AM-FM sinusoids,

yt =
D∑

d=1

� (ad,t exp (iφd,t)) + εt. (1)

The noise term in this expression, a zero mean Gaussian with
variance σ2

y, p(εt) = Norm(εt; 0, σ
2
y), enables the methods to

operate in both noisy and incomplete data settings.
A key assumption of this work is that the instantaneous

frequencies of the sinusoids (φ̇d,t = 1
2π (φd,t − φd,t−1)) un-

dergo slow perturbations around a mean value (ω̄d), so their
phase can be expressed, φd,t = ω̄dt + θd,t. The ill-posed es-
timation problem involves inferring the amplitude and phase-
perturbation variables. Later we will regularize the problem
by placing soft constraints on these variables directly, but first,
we use a simple alternative based on a reparameterization.
Treating each phase-perturbation as a phasor, with compo-
nents x

T
d,t = [x

(1)
d,t , x

(2)
d,t ] = ad,t[cos(θd,t), sin(θd,t)], simpli-

fies the likelihood function,

yt =

D∑
d=1

ad,t (cos(ω̄dt) cos(θd,t)− sin(ω̄dt) sin(θd,t)) + εt,

=

D∑
d=1

(
cos(ω̄dt)x

(1)
d,t − sin(ω̄dt)x

(2)
d,t

)
+ εt = w

T
txt + εt.

Here the phasors have been collected into a vector, x
T
t =

[x
(1)
1,t , x

(2)
1,t , . . . , x

(1)
D,t, x

(2)
D,t], that multiplies time-varying weights,

w
T
t = [cos(ω̄1t),− sin(ω̄1t), . . . , cos(ω̄Dt),− sin(ω̄Dt)].

Now the estimation problem can be regularized by plac-
ing prior distributions over the components of the phasors.
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A simple choice uses independent one-step Gaussian auto-
regressive AR(1) priors,

x
(k)
d,t = λdx

(k)
d,t−1 + σx,d η

(k)
d,t , p(η

(k)
d,t ) = Norm(η

(k)
d,t ; 0, 1).

This model is called Bayesian Spectrum Estimation (BSE) [4]
(when λd = 1). As the model is a linear Gaussian state space
model, estimation is a least-squares problem which can be
solved using the Kalman smoothing algorithm.

An alternative version of the same model can be estab-
lished using the complex representation of the sinusoids treat-
ing the imaginary part as missing data,

yt =

D∑
d=1

�
(
z
(1)
d,t + iz

(2)
d,t

)
+ εt = [1, 0, . . . , 1, 0]zt + εt.

The new variables zT
t = [z

(1)
1,t , z

(2)
1,t , . . . , z

(1)
D,t, z

(2)
D,t] are related

to the old ones by frequency shifts. The frequency shift can be
expressed as a rotation from the old phasors to the new ones,
zd,t = R(ω̄dt)xd,t, where the rotation matrix is

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

The relationship allows the dynamics of the new variables to
be derived from the dynamics of the old variables,

zd,t = λdR(ω̄d)R(ω̄d(t− 1))xd,t−1 +R(ω̄dt)ηd,t,

= λdR(ω̄d)zd,t−1 + η
′
d,t.

The new dynamics are also AR(1), but now variables at time t
are generated by first rotating the variables at time t−1, before
shrinking by λd and adding zero mean Gaussian noise with
covariance 〈η′

d,tη
′T
d,t〉 = R(ω̄dt)〈ηd,tη

T
d,t〉R

T(ω̄dt) = σ2
x,dI.

This equivalent formulation of the BSE model is called
the Probabilistic Phase Vocoder (PPV) [5]. The relation-
ship between BSE and PPV is analogous to the relationship
between the Short-Time Fourier Transform (STFT) and the
analytic signal of a filter bank (ASFB) [6]. This suggests
that BSE should be identified as a probabilistic version of the
STFT, whilst PPV should be identified as a probabilistic ver-
sion of an analytic filter bank. The envelopes extracted from
either representation can be viewed as a probabilistic version
of the spectrogram or equivalently a probabilistic version of
subband demodulation (see fig. 1).

Fig. 1. Relating classical and probabilistic time-frequency
representations.

2.1. Problems with the simple approach

The connection between classical subband demodulation and
probabilistic methods is encouraging, but the probabilistic
methods share some of the deficiencies of their classical
counterparts. For example the IF estimates returned by BSE-
PPV are often ill-behaved, varying erratically and taking
unphysical negative values (see fig. 2B, bottom panel in
blue). The source of the problem is the way we regularized
the solution. First, because higher order AR processes are
needed to encourage derivatives to be slow. Second, and
more seriously, because placing priors on the components of
the phasors favours solutions in which IF varies slowly when
the amplitude is large, but extremely quickly when the ampli-
tude is low. A second problem arises when a signal contains
components which cannot be isolated in a single subband (see
fig. 2B, bottom panel in blue). In such situations it would be
desirable to have a method which identified a single set of
amplitude and IF variables with each component in the signal.
However, in the methods described above the information is
scrambled across the amplitude and IF variables in multiple
subbands. In the remainder of the paper, we address these
problems with BSE-PPV.

3. SOPHISTICATED ALGORITHMS FOR PAFD

In this section we describe a method for fitting a sum of AM
and FM sinusoids to a signal that regularizes the amplitude
and phase variables separately. Two important design choices
lead to a tractable optimisation problem. First, we work with
the phase variables directly because they are less strongly
coupled than IF variables. This stems from the fact that a
change in an IF variable affects not only the current signal
sample, but all subsequent samples too. Second, we regular-
ize the amplitude and phase variables using modified AR pri-
ors because this leads to efficient estimation schemes based
on Kalman smoothing. With these general principles in mind,
the next section will introduce the model in detail.

3.1. Forward model

The new version of the model uses the same likelihood func-
tion as before (eq. 1). A modified AR prior is used to regular-
ize the amplitude variables,

p(ad,1:T |λd,1:τ , σ
2
d) ∝

T∏
t=1

1(ad,t ≥ 0)

×Norm(ad,t;
τ∑

t′=1

λd,t′ad,t−t′ , σ
2
d).

Here, the constraint that the amplitudes are positive variables
is enforced by an indicator function, 1(ad,t ≥ 0).

A similar regularizer can be used for phase pertur-
bation variables, by employing the phasor representation
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c
T
d,t = [c

(1)
d,t , c

(2)
d,t ] = [cos(θd,t), sin(θd,t)] . We specify sec-

ond order AR dynamics constrained to the unit circle,

p(c
(1:2)
d,1:T ) ∝

T∏
t=1

1((c
(1)
d,t )

2 + (c
(2)
d,t )

2 = 1)

×

2∏
k=1

Norm(c
(k)
d,t ;λd,1c

(k)
d,t−1 + λd,2c

(k)
d,t−2, σ

2
x,d).

The model parameters pertaining to a single component (the
mean frequencies of the sinusoids, and the dynamical param-
eters of the amplitude and phase perturbation variables) will
be denoted, αd = {ωd, λd,1:2, σ

2
x,d, λd,1:τ , σ

2
d}.

The model described above will be termed multi-component
Probabilistic Amplitude and Frequency Demodulation (mPAFD)
because it is a generalisation of PAFD [2]. PAFD is itself a
generalisation of convex amplitude demodulation [7, 8]. In
the next section we discuss how to estimate the variables
using a recursive version of the Kalman smoother.

3.2. Estimation

PAFD contains three different non-linear contributions; the
product in the likelihood, the positivity constraint on the am-
plitudes, and the circular constraint on the phasor variables.
These non-linearities make estimation difficult, but in earlier
work we described how to handle them when there is just one
component D = 1 [2]. The main idea is to replace the non-
linear likelihood function and the hard constraints with soft
Gaussian approximations. The approximations are iteratively
refined using a moment-matching algorithm called expecta-
tion propagation [9] which proceeds via a modified version
of the Kalman Smoother because of the AR structure of the
regularisation and the Gaussian form of the approximation.

We extend the old method to handle multiple sinu-
soids via a pursuit style algorithm. Initially the amplitude
and phase perturbation variables are set to zero. To up-
date the estimate of the dth component, we subtract from
the signal the contribution from the other components,
yeff
d,t = yt−

∑
d′ �=d ad′,t(cos(ω̄d′t)c

(1)
d′,t− sin(ω̄d′t)c

(2)
d′,t), and

run PAFD on this residual, yeff
d,t, returning ad,t and c

(k)
d,t . This

process is repeated for each component multiple times until
convergence. Annealing prevents local optima. The algo-
rithm is outlined below.

ad,t ← 0, c
(k)
d,t ← 0 {initialize envelopes and carriers}

for k = 1→ K do
σ2
y ← ANNEAL(k, σ2

y,1, σ
2
y,K) {anneal σ2

y}
for d = 1→ D do

yeff
d,t ← yt−

∑
d′ �=d ad′,t(cos(ω̄d′t)c

(1)
d′,t−sin(ω̄d′t)c

(2)
d′,t)

[ad,t, c
(k)
d,t ]← PAFD(yeff

d,t, αd, σ
2
y) {re-estimate}

end for
end for

4. EXPERIMENTS

It is difficult to evaluate AFD because ground truth estimates
for signals of interest, like speech, are unknown. Evaluation
must therefore take an indirect approach. Here we first use
simple synthetic examples, before moving to a natural signal.

The first set of evaluations use a synthetic signal com-
prising two AM-FM sinusoids with additive Gaussian noise,
yt = y1 + y2 + εt =

∑2
d=1 ad,t cos(φd,t) + εt. An ex-

ample signal is shown in fig. 2B in black. The top panel
shows the signal, the middle two panels the two sinusoidal
components, and the bottom panel the IF of the components.
Both the amplitude and IF variables undergo sinusoidal mod-
ulation. The difference between the mean IFs of the com-
ponents is denoted Δf . It is simple to estimate the two si-
nusoidal components when they occupy different subbands
(large Δf ), but it is difficult when there is partial overlap (in-
dicated by the gray area in the bottom panel). When Δf is
zero the signal is equivalent to a single AM-FM sinusoid so
estimation is again simple. The first experiment evaluates
performance as Δf varies, comparing mPAFD (fig. 2B, red
estimates), BSE-PPV (fig. 2B, blue estimates) and an ideal
version of subband demodulation (ISB) which optimizes the
parameters of half-cosine filters to maximize performance on
a signal by signal basis. The performance of this method
represents an upper bound for a blind version. As fig. 2A
shows, mPAFD is able to estimate the components most reli-
ably as indicated by the superior signal to noise ratio (SNR),
(defined as SNR(x, x̂) = 10 log10 var(x)/var(x̂ − x) where
var is the variance). Similarly, when noise is added to the
signal, mPAFD is again the most accurate method (see fig. 3,
which uses large Δf because this is most favourable to the
ISB method).

Finally we evaluate mPAFD on a noisy song containing
glissandi (see fig. 4). As a surrogate to ground truth, IF tracks
were labeled by hand using a spectrographic representation.
These tracks were compared those estimated using the auto-
mated methods. We find SNRs of 20.7dB for ISB, 23.3dB for
BSE-PPV and 32.3dB for mPAFD.

5. CONCLUSION

We have developed a probabilistic estimation based approach
for decomposing a signal into a sum of AM-FM sinusoids
called mPAFD. Based on Kalman Smoothing, mPAFD is
more computationally intensive than previous approaches.
However, unlike many other approaches, it is able to track
components when they cannot be isolated into a single
subband and it is also robust to noise. We hope that the
probabilistic formulation will lead to automatic methods for
learning the parameters of the model, therefore making the
representation adaptive.
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Fig. 2. Estimating the amplitudes and IFs of a signal contain-
ing two AM-FM sinusoids. A) SNR of the estimated compo-
nents (left) IFs (middle) and amplitudes (right) as the separa-
tion between the two components (dF) increases. The solid
markers indicate the example shown below. B) An exam-
ple signal (black) with mPAFD estimates (red) and BSE-PPV
(blue). See text for more details.
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