
DIMENSION REDUCTION IN REGRESSION USING GAUSSIAN MIXTURE MODELS

Majid Mirbagheri1, Yanbo Xu1, Shihab Shamma1,2

The Institute for Systems Research1, Department of Electrical and Computer Engineering2

University of Maryland College Park
{mbagheri, yanbohsu, sas}@umd.edu

ABSTRACT

Linear–Nonlinear regression models play a fundamental role

in characterizing nonlinear systems. In this paper, we pro-

pose a method to estimate the linear transform in such mod-

els equivalent to a subspace of a small dimension in the input

space that is relevant for eliciting response. The novel as-

pect of this work is the formulation of the mutual information

between the transformed inputs and output as a closed-form

function of the parameters of their joint density in the form

of Gaussian Mixture Models and we subsequently maximize

this measure to find relevant dimensions. Instead of a com-

monly used mutual information measure based on Kullback-

Leibler divergence, we use a measure called Quadratic Eu-

clidean Mutual Information. Through experiments on both

synthesized data and real MEG recordings, the effectiveness

of the proposed method is demonstrated.

Index Terms— dimension reduction, regression, mutual

information, gaussian mixture models

1. INTRODUCTION

Nonlinear system identification techniques have long been ap-

plied to the study of real systems. Of particular interest are

cascade linear–nonlinear (LN) models which have recently

been shown to uniformly approximate, to an arbitrary degree

of precision, any continuous function [1].

Here, we focus on the estimation of the linear part which

usually performs dimension reduction on the inputs of the

system, based on the knowledge that the number of dimen-

sions in the input space important for eliciting a response is

typically smaller than the size of the input. The transformed

input space highlights the ”important” feature dimensions,

thus simplifying model analysis and design.

The pioneering studies on Sliced Inverse Regression

(SIR) [2] and Sliced Average Variance Estimator (SAVE)

[3] have drawn attention to the research for dimension re-

duction in regression which aims at reducing the dimension

of a vector-valued predictor X while the regression relation

with a real-valued Y is preserved. The proposed method falls

into this category when the system output is assumed to be a

real random variable. Various methods have been suggested

to overcome the well known limitations in SIR and SAVE.

To achieve better estimates of E(X|Y ) and E(XXT |Y ),
recently, a series of methods via maximum likelihood [4]

have been suggested, in which the conditional distribution of

X given certain Y is assumed to be gaussian. Alternatively,

Gaussian Mixture Models (GMM) is adopted to approxi-

mate the underlying joint probability distribution of X and

Y , avoiding the mismatch between assumptions and real

data. Besides, as our primary interest is to analyze cascade

linear–nonlinear models, mutual information [5] is brought

to measure the relevance of projected X with Y in order to

avoid imposing certain functional forms on the nonlinearity

of the system. Although the idea of using mutual information

to perform dimension reduction is not new, differing from

previous methods, we are particularly interested in dimension

reduction in nonlinear systems with continuous response.

And by combining GMM and Quadratic Mutual Information

(explained later), our method provides a closed-form measure

of mutual information between the atransformed input and

output.

The structure of the paper is as follows. The next section

describes the proposed method in details. And experimental

results are presented in section 3. And finally we conclude

this work with section 4.

2. DIMENSION REDUCTION IN REGRESSION
USING GMM

In this section, we describe the proposed method to conduct

dimension reduction in regression.

2.1. Quadratic Mutual Information

Based on Shannon’s definition, MI between two random vari-

ables can be viewed as Kullback-Leibler divergence between

their joint density and the product of their marginal densities.

We examine now alternative divergence measures for our pur-

pose. In [6], Kapur argued that if the aim is not to calculate

an absolute value of the divergence, but rather to find a distri-

bution that minimizes/maximizes the divergence, the axioms

used in deriving the measure can be relaxed and yet the result

of the optimization is the same distribution. Now if we define
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Fig. 1. Learning linear transforms by maximizing the mutual

information between system outputs and input projections.

the Euclidean Distances between two distributions f and g as:

DED =

∫ (
f(x)− g(x)

)2
dx (1)

then Quadratic Mutual Information Euclidean Distance (de-

noted by IED henceforth) of two random variables X and Y

would be defined as the Euclidean distance between their joint

pdf and the factorized marginal pdf, and is written as:

IED(X,Y ) = (2)

= DED

(
fX,Y (x, y), fX(x)fY (y)

)
=

∫∫ (
fX,Y (x, y)− fX(x)fY (y)

)2
dxdy

Now assume that two random vectors X and Y , respec-

tively n− and m−dimensional, have a joint density modeled

as a Gaussian mixture of the following form:

fZ(z) =
K∑
i=1

ωiG(z − μi, Ci), (3)

where Z is the random vector describing their joint behaviors

(Z =

[
X
Y

]
), ωi are non-negative weighting coefficients with∑

i ωi = 1 and G is the normal distribution with mean μ and

covariance C.

G(z − μ, C) = |(2π)m+nC|− 1
2 e−

1
2 (z−μ)TC−1(z−μ) (4)

Notice that X and Y will also have marginal densities of the

form:

fX(x) =

K∑
i=1

ωiG(x− μX
i , Ai), (5)

fZ(y) =

K∑
i=1

ωiG(y − μY
i , Bi), (6)

with μi =

[
μX

i

μY
j

]
and Ci =

[
Ai Di

DT
i Bi

]
. By substituting

(3), (5) and (6) in (2), and some mathematical manipulations,

IED(X,Y ) will be formulated as following:

IED(X,Y ) =

=
K∑
i=1

K∑
j=1

ωiωjG(μi − μj , Ci + Cj) (7)

+

K∑
i=1

K∑
j=1

ωiωjG(μX
i − μX

j , Ai +Aj)

·
K∑
i=1

K∑
j=1

ωiωjG(μY
i − μY

j , Bi +Bj)

−2
K∑
i=1

K∑
j=1

ωiωj

K∑
k=1

ωkG(μi −
[
μX

j

μY
k

]
, Ci +

[
Aj 0n×m

0m×n Bk

]
)

In deriving the above expression we used the fact that the con-

volution of two Gaussians centered at μi and μj is a Gaussian

centered at μi − μj with covariance equal to the sum of the

original covariances.

2.2. Maximization of Mutual Information

Now let X be the D−dimensional random vector represent-

ing system inputs, and Y be the random variable for the sys-

tem output. Without loss of generality we assume that the

output size to be one. The goal is to find a linear transforma-

tion g : RD → R
d (d < D) such that the mutual information

between transformed inputs and the output is maximized, or

equivalently to find a d×D matrix W � such that:

W � = argmax
W

IED(WX,Y ) (8)

subject to WWT = I

The constraint is set for that it makes the feasible set com-

pact so that the existence of a mapping that maximizes the

mutual information is assured. The constrained optimization

problem can be changed to an unconstrained one by param-

eterization of the transform matrix W by Givens rotation an-

gles. A thorough description of the method is given in [7].

Having already found the joint density of X and Y in the

form of (3), it can be easily shown that the joint density of the

transformed input X̃ = WX , and the output is as following:

fZ̃(z̃) =
K∑
i=1

ωiG(z̃ − W̃μi, W̃CiW̃
T ), (9)

with Z̃ =

[
X̃
Y

]
and W̃ =

[
W 0d×1

01×D 1

]
.

Since

W̃μi =

[
W 0d×1

01×D 1

][
μX

i

μY
j

]
=

[
WμX

i

μY
j

]
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and

W̃CiW̃
T =

[
W 0d×1

01×D 1

][
Ai Di

DT
i Bi

][
WT 0D×1

01×d 1

]

=

[
WAiW

T WDi

DT
i W

T Bi

]

IED(X̃, Y ) can easily be calculated by replacing μi,μ
X
i ,

Ci and Ai respectively with W̃μi, WμX
i , W̃CiW̃

T and

WAiW
T wherever they appear in (7). Ending in a differen-

tiable expression of IED(X̃, Y ) with respect to W , now we

are able to maximize the mutual information by performing a

gradient ascent method via the following iterative procedure:

Wt+1 = Wt + η
∂IED

∂W
(10)

For that, we have to compute ∂IED/∂W . Looking at the

expression of IED(X̃, Y ), one can observe that the first

and the third terms are composed of different sums of

G(W̃μ, W̃CW̃T ) while the second term includes sums of

G(Wμ,WCWT ). This implies that to compute the gradient

it suffices to derive ∂G(Wμ,WCWT )/∂W which can be

found to be:

∂

∂W
G(Wμ,WCWT ) = (11)

−G(Wμ,WCWT )S−1
[
(I −mmTS−1)WC +mμT

]

with m = Wμ and S = WCWT . Therefore ∂IED/∂W
can be computed by simply replacing the terms of form

G(Wμ,WCWT ) by their derivative found above and those

of form G(W̃μ, W̃CW̃T ) by their derivative with respect to

W̃ and eliminating the elements in the last row and the last

column (as a result of the relation between W and W̃ ).

2.3. Evaluation

The estimation of the GMM model is a crucial step for our

method. Given limited data samples, a too small number of

mixtures will result in poor estimate while a too large one

will incur overfitting. So the suitable number of mixtures

should be determined based on the number of available sam-

ples. Adopting a gradient descent search for the optimization

stage, our method comes to stop when the increment between

two iterations is smaller than a predefined threshold. To avoid

being trapped in local maxima, as an issue of gradient descent

methods, we repeat searching with several random initializa-

tions for W and keep the result with the largest mutual infor-

mation.

3. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our method, we conduct

experiments with both synthesized and real data sets. The ad-

vantage of using synthesized data set is our full knowledge of
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Fig. 2. Scatter plot of the inputs. 10000 point were randomly

drawn from a 2-dimensional distribution.

SIR LAD OUR

0.4876 0.8087 0.9996

Table 1. The average estimation scores

the system which allows us to make a fair and accurate judge-

ment on the performance of different methods. For compari-

son, SIR, which gives only coarse estimate, is chosen as the

baseline. We also included results for Likelihood Acquired

Direction (LAD) [4], which is based on Maximum Likeli-

hood and chosen as a representative of the state–of–the–art

methods.

3.1. Analysis with Synthesized Data

The input x = [x1 x2 x3]
T is in 3-dimensional with 10000

i.i.d. samples, for which the first two dimensions are drawn

from a random distribution with scatter plot in Fig. 2 while

the third dimension is gaussian noise with zero mean and unit

variance. We design the system output to be only relevant to

the first two dimensions and the nonlinearity to be the cosine

function as follows:

y = f(x) = cos(wx) = cos(w1x1 + w2x2) (12)

Expecting to get w = [w1 w2 0] as the most relevant di-

rection, we run SIR, LAD, our method with the transformed

input in 1-dimensional. The GMM had 32 mixtures with diag-

onal covariance matrix. For SIR and LAD, the parameter rep-

resenting the number of slices is set to 10 as we observe that

the estimation results are almost the same if a larger number

of slices is applied. The accuracy of each method is measured

by the absolute value of the inner product of the estimated di-

rection ŵ with the ground truth, i.e. |ŵwT |. A good estimate

will produce a score close to 1. We run this experiment 10

times with different random w, and the average of the scores

of these 3 methods are presented in Table 1.
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Fig. 3. Amplitude Response of the transformed recording

around the modulation frequency

From Table 1, our method achieved almost perfect estima-

tion with the third dimension of the input correctly ignored.

Both LAD and SIR performed weaker in this test.

3.2. Analysis with MEG Recordings

The Magnetoencephalograph (MEG) data set [8] contains

recording from 157 sensors around the brain when one sub-

ject was presented with a sinusoidally amplitude-modulated

stimulus. The modulation frequency is 1.5Hz and the carrier

is pure tone at 707Hz. The 2s stimulate was played 50 times,

and 100s recording was collected from each sensor. The brain

of this subject is a complex nonlinear system, and the sensors

recorded the magnetic signals emitted from the brain’ activity

evolving response to the stimulus and other factors. We try to

combine the recordings to obtain the ”response” of the brain

to the stimulus, which is modeled as a 1-dimensional wave-

form. Under the assumption that the response contains all

the information of the stimulus, we propose to optimize the

linear combination of recordings in a supervised manner. One

issue should be pointed out is that the stimulus was sampled

at 44.1KHz while the recordings were 500Hz. To achieve

the same resolution, the stimulus was downsampled to 8KHz,

and the recordings were upsampled to the same frequency

without bringing distortion to the signals. The 157 recordings

were first denoised with reference to the recordings from 3

additional isolated sensors to filter out background and sen-

sor noise. We apply again SIR, LAD, and our method to

reduce the 157-dimensional data to 1-dimensional. To ob-

serve the transformed recording signal in a meaningful way

[8], the frequency response of this signal was obtained by

Fast Fourier Transform, and the amplitude response around

the modulation frequency 1.5Hz was plotted in Fig. 3.

According to [8], a peak at the modulation frequency is

supposed to be seen. The response with SIR was relatively

flat without any salient peak while our method and LAD suc-

cessfully maintain the useful information in the transformed

recording. And it is worth noting that response with our

method has a higher peak at 1.5Hz (useful information) and a

smaller peak at 1Hz (probably noise) compared with LAD.

4. CONCLUSION

In this paper, we propose a new method for dimension re-

duction in regression. Aided with GMM and Quadratic Mu-

tual Information, we apply gradient descent method to search

for the optimum linear transformation matrix by maximiz-

ing the closed-form expression of the mutual information be-

tween system output and transformed system input. Specially

designed for nonlinear systems with continuous output, our

method is demonstrated to be capable of estimating the linear

part of the cascaded system efficiently. And promisingly, we

believe it can serve as a potential tool for analyzing complex

systems.
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