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ABSTRACT

Robust low-rank matrix estimation is a topic of increasing interest,
with promising applications in a variety of fields, from computer
vision to data mining and recommender systems. Recent theoreti-
cal results establish the ability of such data models to recover the
true underlying low-rank matrix when a large portion of the mea-
sured matrix is either missing or arbitrarily corrupted. However, if
low rank is not a hypothesis about the true nature of the data, but
a device for extracting regularity from it, no current guidelines ex-
ist for choosing the rank of the estimated matrix. In this work we
address this problem by means of the Minimum Description Length
(MDL) principle – a well established information-theoretic approach
to statistical inference – as a guideline for selecting a model for the
data at hand. We demonstrate the practical usefulness of our formal
approach with results for complex background extraction in video
sequences.

Index Terms— Low-rank matrix estimation, PCA, Robust
PCA, MDL.

1. INTRODUCTION

The key to success in signal processing applications often depends
on incorporating the right prior information about the data into the
processing algorithms. In matrix estimation, low-rank is an all-time
popular choice, with analysis tools such as Principal Component
Analysis (PCA) dominating the field. However, PCA estimation is
known to be non-robust, and developing robust alternatives is an ac-
tive research field (see [1] for a review on low-rank matrix estima-
tion). In this work, we focus on a recent robust variant of PCA,
coined RPCA [1], which assumes that the difference between the
observed matrix Y, and the true underlying data X, is a sparse ma-
trix E whose non-zero entries are arbitrarily valued. It has been
shown in [1] that X (alternatively, E) can be recovered exactly by
means of a convex optimization problem involving the rank of Y
and the �1 norm of E. The power of this approach has been re-
cently demonstrated in a variety of applications, mainly computer vi-
sion (see [2] and http://perception.csl.uiuc.edu/matrix-rank/

applications.html for examples).

However, when used as a pure data modeling tool, with no as-
sumed “true” underlying signal, the rank of X in a PCA/RPCA de-
composition is a parameter to be tuned in order to achieve some
desired goal. A typical case is model selection [3, Chapter 7], where
one wants to select the size of the model (in this case, rank of the ap-
proximation) in order to strike an optimal balance between the ability
of the estimated model to generalize to new samples, and its ability to
adapt itself to the observed data (the classic overfitting/underfitting
trade-off in statistics). The main issue in model selection is how to
formulate this balance as a cost function.
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In this work, we address this issue via the Minimum Description
Length (MDL) principle [4, 5].1 MDL is a general methodology for
assessing the ability of statistical models to capture regularity from
data. The MDL principle can be regarded as a practical implemen-
tation of the Occam’s razor principle, which states that, given two
descriptions for a given phenomenon, the shorter one is usually the
best. In a nutshell, MDL equates “ability to capture regularity” with
“ability to compress” the data, using codelength or compressibility
as the metric for measuring candidate models.

The resulting framework provides a robust, parameter-free low-
rank matrix selection algorithm, capable of capturing relevant low-
rank information in the data, as in the video sequences from surveil-
lance cameras in the illustrative application here reported. From a
theoretical standpoint, this brings a new, information theoretical per-
spective into the problem of low-rank matrix completion. Another
important feature of an MDL-based framework such as the one here
presented is that new prior information can be naturally and easily
incorporated into the problem, and its effect can be assessed objec-
tively in terms of the different codelengths obtained.

2. LOW-RANK MATRIX ESTIMATION/APPROXIMATION

Under the low-rank assumption, a matrix Y ∈ R
m×n can be written

as Y = X+ E, where rank(X) � min{m,n} and ‖E‖ � ‖Y‖,
where ‖·‖ is some matrix norm. Classic PCA provides the best rank-
k approximation to Y under the assumption that E is a random ma-
trix with zero-mean IID Gaussian entries,

X̂ = argmin
W

‖Y −W‖2 , s.t. rank(W) ≤ k. (1)

However, PCA is known to be non-robust, meaning that the estimate

X̂ can vary significantly if only a few coefficients in E are modified.
This work, providing an example of introducing the MDL frame-
work in this type of problems, focuses on a robust variant of PCA,
RPCA, introduced in [1]. RPCA estimates X via the following con-
vex optimization problem,

X̂ = argmin
W

‖Y −W‖1 + λ ‖W‖∗ , (2)

where ‖W‖∗ :=
∑

i σ(W)i is the nuclear norm of W (σ(W)i
denotes the i-th singular value of W). The rationale behind (2) is
as follows. First, the �1 fitting term allows for large errors to occur
in the approximation. In this sense, it is a robust alternative to the
�2 norm used in PCA. The second term, λ ‖W‖∗ , is a convex ap-
proximation to the PCA constraint rank(W) ≤ k, merged into the
cost function via a Lagrange multiplier λ. Such approximation has
been used for example in [6, 7] for various types of fitting terms.
However, the particular case of using �1 fitting term of (2) has been

1While here we address the matrix formulation, the developed framework
is applicable in general, including to sparse models, and such general formu-
lation will be reported in our extended version of this work.
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recently shown to be notoriously robust, in the sense that, if a true
low-rank matrix X exists, it can be recovered using (2) even when a
significant amount of coefficients in E are arbitrarily large [1]. This
can be achieved by setting λ = 1/

√
max{m,n}, so that the proce-

dure is parameter-free.

2.1. Low-rank approximation as dimensionality reduction

In many applications, the goal of low-rank approximation is not to
find a “true” underlying matrix X, but to perform what is known
as “dimensionality reduction,” that is, to obtain a succinct represen-
tation of Y in a lower dimensional subspace. A typical example is
feature selection for classification. In such cases, E is not necessarily
a small measurement perturbation, but a systematic, possibly large,
error derived from the approximation process itself. Thus, RPCA
arises as an appealing alternative for low-rank approximation.

However, in the absence of a true underlying signal X (and de-
viation E), it is not clear how to choose a value of λ that produces
a good approximation of the given data Y for a given application.
A typical approach would involve some cross-validation step to se-
lect λ to maximize the final results of the application (for example,
minimize the error rate in a classification problem).

The issue with cross-validation in this situation is that the best
model is selected indirectly in terms of the final results, which can
depend in unexpected ways on later stages in the data processing
chain of the application (for example, on some post-processing of the
extracted features). Instead, we propose to select the best low-rank
approximation by means of a direct measure on the intrinsic abil-
ity of the resulting model to capture the desired regularity from the
data, this also providing a better understanding of the actual struc-
ture of the data. To this end, we use the MDL principle, a general
information-theoretic framework for model selection which provides
means to define such a direct measure.

3. MDL-BASED LOW-RANK MODEL SELECTION

Consider a family M of candidate models which can be used to
describe a matrix Y exactly (that is, losslessly) using some encod-
ing procedure. Denote by L(Y|M) the description length, in bits,
of Y under the description provided by a given model M ∈ M.

MDL will then select the model M̂ ∈ M for Y for which L(Y|M̂)

is minimal, that is M̂ = argminM∈M L(Y|M). It is a standard
practice in MDL to use the ideal Shannon code for translating prob-
abilities into codelengths. Under this scheme, a sample value y with
probability P (y) is assigned a code with length L(y) = − logP (y)
(all logarithms are taken on base 2). This is called an ideal code be-
cause it only specifies a codelength, not a specific binary code, and
because the codelengths produced can be fractional.

By means of the Shannon code assignment, encoding schemes
L(·) can be defined naturally in terms of probability models P (·).
Therefore, the art of applying MDL lies in defining appropriate prob-
ability assignments P (·), that exploit as much prior information as
possible about the data at hand, in order to maximize compressibil-
ity. In our case, there are two main components to exploit. One is the
low-rank nature of the approximation X, and the other is that most
of the entries in E will be small, or even zero (in which case E will
be sparse). Given a low-rank approximation X of Y, we describe Y
as the pair (X,E), with E = Y−X. Thus, our family of models is
given by M = {(X,E) : Y = X+E, rank(X) ≤ rank(Y)}. As
E = Y −X, we index M solely by X. With these definitions, the
description codelength of Y is given by L(Y|X) := L(X)+L(E).

Now, to exploit the low rank of X, we describe it in terms of its
reduced SVD decomposition,

X = UΣVᵀ U ∈ R
m×k, Σ ∈ R

k×k, V ∈ R
k×n, (3)

where k is the rank of X (the zero-eigenvalues and the respective
left and right eigenvectors are discarded in this description). We now
have L(X) = L(U)+L(Σ)+L(V). Clearly, such description will
be short if rank(X) is significantly smaller than max{m,n}. We
may also be able to exploit further structure in U, Σ and V.

3.1. Encoding Σ

The diagonal of Σ is a non-increasing sequence of k positive val-
ues. However, no safe assumption can be made about the magnitude
of such values. For this scenario we propose to use the universal
prior for integers, a general scheme for encoding arbitrary positive
integers in an efficient way [8],

L(j) = log∗ j := log j + log log j + . . .+ log 2.865, (4)

where the sum stops at the first non-positive summand, and log 2.865
is added to satisfy Kraft’s inequality (a requirement for the code to
be uniquely decodable, see [9, Chapter 5]). In order to apply (4),
the diagonal of Σ, diag(Σ), is mapped to an integer sequence via
[1016diag(Σ)], where [·] denotes rounding to nearest integer (this is
equivalent to quantizing diag(Σ) with precision δΣ = 10−16).

3.2. Encoding U and V, general case

By virtue of the SVD algorithm, the columns of U and V have unit
norm. Therefore, the most general assumption we can make about
U and V is that their columns lie on the respective m-dimensional
and n-dimensional unit spheres.

An efficient code for this case can be obtained by encoding each
column of U and V in the following manner. Let ui be a column of
U (V is similarly encoded). Since ui is assumed to be distributed
uniformly over the m-dimensional unit sphere, the marginal cumula-
tive density function of the first element u1i, F (u1i) = P (x ≤ u1i),
corresponds to the proportion of vectors u that lie on the unit spher-
ical cap of height h = 1 + u1i (see Figure 1(a)). This proportion
is given by F (u1i) = Am(1 + u1i, 1)/Sm(1) where Am(h, r) and
Sm(r) are the area of spherical cap of height h and the total surface
area of the m-dimensional sphere of radius r respectively. These are
given for the case 0 ≤ h ≤ r (−1 ≤ u1i ≤ 0) by (see [10]),

Am(h, r) =
1

2
Sm(r)I((2hr − h2)/r2 ;

m− 1

2
,
1

2
)

Sm(r) = 2πm/2rm−1Γ−1(m/2),

where I(x ; a, b) =
∫ x
0 ta−1(1−t)b−1dt

B(a,b)
, and B(a, b) =

∫ 1

0
ta−1(1−

t)b−1dt are the regularized incomplete Beta function and the Beta
function of parameters a, b respectively, and Γ(·) is the Gamma
function. When r < h ≤ 2r we simply have Am(h, r) = 1 −
Am(2r − h, r). For encoding u1i we have r = 1 so that

F (u1i) = (1/2)I(1− u2
1i; (m− 1)/2, 1/2),−1 ≤ u1i ≤ 0, (5)

since 2h− h2 = h(2− h) = (1 + u1i)[2− (1 + u1i)] = 1− u2
1i.

Finally, we compute the Shannon codelength for u1i as

p(u1i) = F ′(u1i)
(a)
=

(1− u2
1i)

(m−3)/2(u2
1i)

−1/2

2 ·B (
m−1

2
, 1
2

) (−2u1i)

= −sgn(u1i)(1− u2
1i)

(m−3)/2[B((m− 1)/2, 1/2)]−1

− log p(u1i) = −m− 3

2
log(1− u2

1i) + logB((m− 1)/2, 1/2),
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Fig. 1. (a) The spherical cap of radius r and height h (shown in
gray). (b) Causal bilinear prediction of smooth 2D images.

where in (a) we applied the Fundamental Theorem of Calculus to
the definition of F (h) and the chain rule for derivatives.

With u1i encoded, the vector (u2i, u3i, . . . , umi) is uniformly
distributed on the surface of the (m − 1)-dimensional sphere of ra-
dius r′ = 1− |u1i|, and we can apply the same formula to compute
the probability of u2i, F (u2i) = Am−1(u2i + r′, r′)/Sm−1(r

′).
Finally, to encode the next column ui+1, we can exploit its or-

thogonality with respect to the previous ones and encode it as a vec-
tor distributed uniformly over the m − i dimensional sphere cor-
responding to the intersection of the unit sphere and the subspace
perpendicular to [u1, . . . ,ui].

In order to produce finite descriptions L(U) and L(V), both
U and V also need to be quantized. We choose the quantization
steps for U and V adaptively, using as a starting point the empirical
standard deviation of a normalized vector, that is, δu =

√
1/m and

δv =
√

1/n respectively, and halving these values until no further
decrease in the overall codelength L(Y|X) is observed.

3.3. Encoding U predictively

If more prior information about U and V is available, it should be
used as well. For example, in the case of our example application,
the columns of Y are consecutive frames of a video surveillance
camera. In this case, the columns of U represent “eigen-frames”
of the video sequence, while V contains information about the evo-
lution in time of those frames (this is clearly observed in figures 2
and 3). Therefore, the columns of U can be assumed to be piecewise
smooth, just as normal static images are. To exploit this smoothness,
we apply a predictive coding to the columns of U. Concretely, to
encode the i-th column ui of U, we reshape it as an image B of
the same size as the original frames in Y. We then apply a causal

bilinear predictor to produce an estimate of B, B̂ = {b̂jl} where

b̂jl = bjl − bj(l−1) − b(j−1)l + b(j−1)(l−1), assuming out-of-range

pixels to be 0. The prediction residual B̃ = B − B̂ is then en-
coded in raster scan as a sequence of Laplacian random variables
with unknown parameter θiu. This encoding procedure, common in
predictive coding, is depicted in Figure 1(b).

Since the parameters
{
θiu, i = 1, . . . , k

}
are unknown, we need

to encode them as well to produce a complete description of Y. In
MDL, this is done using the so-called universal encoding schemes,
which can be regarded as a generalization of classical Shannon en-
coding to the case of distributions with unknown parameters (see [5]
for a review on the subject). In this work we adopt the so-called
universal two-part codes, and apply it to encode each column ui

separately. Under this scheme, the unknown Laplacian parameter

for θiu is estimated via Maximum Likelihood, θ̂iu(ui), and quantized

with precision 1/
√
m, thus requiring L(θ̂iu) = 1

2
logm + c1 bits.

Given the quantized θ̂iu, ui is described using the discretized Lapla-

cian distribution L(ui) = − logP (ui|θ̂iu(ui))+c2. Here c1 and c2
are constants which can be disregarded for optimization purposes. It
was shown in [4] that the precision 1/

√
m asymptotically yields the

shortest two-parts codelength.

3.4. Encoding V predictively

We also expect a significant redundancy in the time dimension, so
that the columns of V are also smooth functions of time (in this
case, sample index j = 1, 2, . . . , n). In this case, we apply a first or-
der causal predictive model to the columns of V, by encoding them
as sequences of prediction residuals, ṽi = (ṽi1, ṽi2, . . . , ṽin), with
ṽij = vij−vi(j−1) for j > 1 and ṽi1 = vi1. Each predicted column
vi is encoded as a sequence of Laplacian random variables with un-
known parameter θiv . As with U, we use a two-parts code here to
describe the data and the unknown Laplacian parameters together.
This time, since the length of the columns is n, the codelength asso-
ciated to each θiv is L(θiv) =

1
2
log n.

3.5. Encoding E

We exploit the (potential) sparsity of E by first describing the in-
dexes of its non-zero locations using an efficient universal two-parts
code for Bernoulli sequences known as Enumerative Code [11], and
then the non-zero values at those locations using a Laplacian model.
In the specific case of the experiments of Section 4, we encode each
row of E separately. Because each row of E corresponds to the pixel
values at a fixed location across different frames, we expect some of
these locations to be better predicted than others (for example, loca-
tions which are not occluded by people during the sequences), so that
the variance of the error (hence the Laplacian parameter) will vary
significantly from row to row. As before, the unknown parameters
here are dealt with using a two-parts coding scheme.

3.6. Model selection algorithm

To obtain the family of models M corresponding to all possible low-
rank approximations of Y, we apply the RPCA decomposition (2)
for a decreasing sequence of values of λ, {λt : t = 1, 2, . . .} ob-
taining a corresponding sequence of decompositions {(Xt,Et), t =
1, 2, . . .}. We obtain such sequence efficiently by solving (2) via a
simple modification of the Augmented Lagrangian-based (ALM) al-
gorithm proposed in [12] to allow for warm restarts, that is, where
the initial ALM iterate for computing (Xt,Et) is (Xt−1,Et−1).
We then select the pair (Xt̂,Et̂), t̂ = argmint{L(Xt) + L(Et)}.

4. RESULTS AND CONCLUSION

In order to have a reference base, we repeated the experiments per-
formed in [2] using our algorithm. These experiments consist of
frames from surveillance cameras which look at a fixed point where
people pass by. The idea is that, if frames are stacked as columns
of Y, the background can be well modeled as a low-rank compo-
nent of Y (X), while the people passing by appear as “spurious er-
rors” (E). Clearly, if the background in all frames is the same, it
can be very well modeled as a rank-1 matrix where all the columns
are equal. However, lighting changes, shadows, and reflections,
“raise” the rank of the background, and the appropriate rank needed
to model the background is no longer obvious.

Concretely, the experiments here described correspond to two
sequences: “Lobby” and “ShoppingMall,” whose corresponding re-
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Fig. 2. Results for the “Lobby” sequence (see text for a description
of the above pictures and graphs). The rank of the approximation
decomposition for this case is k = 10. The moment where the lights
are turned off is clearly seen here as the “square pulse” in the middle
of the first two right-eigenvectors (bottom-right figure). Also note
how u2 (top-right) compensates for changes in shadows.

sults are summarized respectively in figures 2 and 3.2 At the top
of both figures, the first two left-eigenvectors u1 and u2 of X are
shown as 2D images. The middle shows two sample frames of the
error approximation. The L-vs-λ curve is shown at the bottom-left
(note that the best λ is not the one dictated by the theory in [1], which
are 0.007 for Lobby and 0.0035 for ShoppingMall, both outside of
the plotted range), and the scaled right-eigenvectors σivi are shown
on the bottom-right. In both cases, the resulting decomposition re-
covered the low-rank structure correctly, including the background,
its changes in illumination, and the effect of shadows. It can be ap-
preciated in the figures 2-3 how such approximations are naturally
obtained as combinations of a few significant eigen-vectors, starting
with the average background, followed by other details.

4.1. Conclusion

In summary, we have presented an MDL-based framework for low-
rank data approximation, which combines state-of-the-art algorithms
for robust low-rank decomposition with tools from information the-
ory. This framework is able to capture the underlying low-rank in-
formation on the experiments that we performed, out of the box,
and without any hand parameter tuning, thus constituting a promis-
ing competitive alternative for automatic data analysis and feature
extraction.
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