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ABSTRACT
Detecting the number of signals in a given number of obser-

vations, or order detection, is one of the key issues in many

signal processing problems. Information theoretic criteria are

widely used to estimate the order. In many applications, data

does not follow the independently and identically distributed

(i.i.d.) sampling assumption. Previous approaches address

dependent samples by downsampling the dataset so that exist-

ing order detection methods can be used. By downsampling

the data, the sample size is decreased so that the accuracy of

the order estimation is degraded. In this paper, we introduce

two linear mixture models with dependent samples. The like-

lihood for each model is developed based on the entire data set

and used in an information theoretic framework to improve

the order estimation performance for dependent samples. Ex-

perimental results show performance improvement using this

new method.

Index Terms— Order detection, Entropy rate, MDL cri-

teria.

1. INTRODUCTION

A key issue when using a linear signal mixture with additive

noise model is the detection of the number of signals. The

seminal paper [1] introduced the use of information theoretic

criteria (ITC) for the order selection problem. The ITC meth-

ods of [1] are now widely used for order selection because the

order is estimated without requiring the user to specify a sub-

jective threshold. In [1], the samples are assumed to be i.i.d.

in order to calculate the likelihood. For many applications,

the i.i.d. sampling assumption is violated. This paper focuses

on order estimation without an i.i.d. sampling assumption,

i.e., when the samples are dependent.

A reasonable assumption in practice is that the sample de-

pendence is finite, i.e., there is finite memory in the observa-

tions. In the sequel, we restrict ourselves to finite memory,

which allows for dependency to be removed by downsam-

pling as done in previous approaches that address the prob-

lem. An intuitive method using an entropy rate matching prin-

ciple is proposed in [2] to estimate the downsampling depth

and then estimate the number of signals using [1]. There are

several drawbacks for this method. First, a subjective thresh-

old is needed to estimate the downsampling depth. Second,
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this method only uses a subset of the available samples to esti-

mate the order. For example, only 10% of data will be used if

downsampling depth is 10. Third, the calculated likelihood is

for the downsampled data set, not for the whole data set. An

improved method is given in [3]. The downsampling depth

is estimated by using ITC to avoid specifying any subjective

threshold. As in [2], the downsampled data is used to calcu-

late the likelihood. Since the maximum likelihood estimator

has large sample optimality properties and can be heavily bi-

ased when using small sample sizes, using all the samples

in the estimation is likely to significantly improve the perfor-

mance as we show here.

In this paper, we introduce two different models for gener-

ating sample dependence. Then we calculate their respective

likelihoods, using all the available samples, and determine

how many free parameters are available, as required to imple-

ment ITC methods. Also, we show that this new method is a

generalization of the method given in [1]. Simulation results

show this new method can improve the performance, espe-

cially for small data sets, low signal to noise ratios (SNR),

and high memory lengths.

2. BACKGROUND

2.1. Linear Mixture Model
We consider the commonly assumed linear signal model with

additive noise:

x(t) = As(t) + n(t), t = 1, . . . , T, (1)

where t is the discrete time index, x(t) is the N ×1 complex-
valued observed random vector of the tth sample, A is a full

column rank N × M complex-valued mixing matrix with

0 ≤ M < N , s(t) is the M × 1 complex-valued latent Gaus-

sian source vector, n(t) is an N × 1 complex-valued white

Gaussian noise vector, which is isotropic. In this paper, sig-

nal and noise are only considered to be circular complex, so

that the complete second-order statistics are captured by the

ordinary covariance matrices. Sample size is T . The problem

is to detect model order M . The compact form for (1) is X =
AS+N, where X = [x(1), . . . ,x(T )], S = [s(1), . . . , s(T )]
and N = [n(1), . . . ,n(T )].

2.2. ITC Based Order Estimation
Order estimation via ITC can be achieved using, among oth-

ers, Akaike’s Information Criterion (AIC) [4], Bayesian In-
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formation Criterion (BIC) [5] or equivalently Minimum De-

scription Length (MDL) [6]. A general form for ITC is given

by

M̂ = arg min
M

{−αlog P (x(1), . . . ,x(T )|θM )+r(θM )η(T )},
where P (x(1), . . . ,x(T )|θM ) is the joint probability density

function, r(θM ) indicates all free parameters for order M .

For AIC, α = 2 and η(T ) = 2. For MDL and BIC, α = 1
and η(T ) = 0.5 log T . For model (1) with i.i.d. samples, it

is shown in [1] that order detection using MDL is consistent

as T → ∞, and the AIC is shown to be inconsistent. Hence,

we use the MDL criterion in this paper. If x is i.i.d., Gaussian

distributed, then the MDL order selection criterion [1, 7] is

Jλ=
M∑
i=1

log λ2
i +(N−M) log σ2+

M(2N − M) log T

2T
, (2)

where λi is the ith largest eigenvalue of Ĉx = XXH/T ,

σ2 = 1
N−M

∑N
i=M+1 λ2

i , and superscript H denotes conju-

gate transpose.

3. LOG LIKELIHOOD CALCULATION FOR
DEPENDENT SAMPLES

The unitary linear transform Y = UHX yields (second-

order) uncorrelated principal components [y1, . . . ,yN ], where

U is the eigenvector matrix of Ĉx. This holds when the sam-

ple size T → ∞, even for dependent samples. Assuming yi is

stationary and has finite memory of length Ki, the likelihood

function is given by

L(θ) = − 1
T

log P (X) (3)

=
N∑

i=1

(
− 1

T
log P (yi)

)
(4)

=
N∑

i=1

(
− 1

T
log{P [yi(1)] · P [yi(2)|yi(1)] · · · ·

·P [yi(T )|yi(T − 1), . . . , yi(T − Ki + 1)]}
)

(5)

=
N∑

i=1

−1
T

( T ′
i∑

t=1

log P [yi(t, Ki)] −
T ′

i∑
t=2

log P [yi(t, Ki − 1)]
)

≈
N∑

i=1

−1
T ′

i

( T ′
i∑

t=1

log P [yi(t, Ki)] −
T ′

i∑
t=1

log P [yi(t, Ki − 1)]
)

(6)

=
N

2
log (2π) +

1
2

N∑
i=1

((
log det(Ci(Ki)) + tr(C−1

i(Ki)
Ĉi(Ki))

)

−
(

log det(Ci(Ki−1)) + tr(C−1
i(Ki−1)Ĉi(Ki−1))

))
, (7)

where T ′
i � T −Ki+1, and yi(t, L) � [yi(t), . . . , yi(t+L−

1)]T . The Ki×Ki and (Ki−1)×(Ki−1) autocorrelation ma-

trix of yi are given by Ci(Ki) and Ci(Ki−1). The correspond-

ing sample autocorrelation matrices Ĉi(Ki) and Ĉi(Ki−1) are

defined by

Ĉi(L) � 1
T ′

i

T ′
i∑

t=1

yi(t, L)yH
i (t, L),

where L = Ki and Ki − 1 respectively. Since yi is Gaussian

distributed, uncorrelatedness implies independence. Hence,

(4) follows (3). By the assumption that yi has finite mem-

ory Ki, we have (5). When the sample size T → ∞, the

ratio (T/T ′) → 1, thus the approximation in (6) holds. By

the assumption of stationarity of yi, we arrive at (7) from (6).

Using Ĉi(Ki) and Ĉi(Ki−1) as the estimation of Ci(Ki) and

Ci(Ki−1) and omitting terms that do not depend on the pa-

rameters, we can write the likelihood function L as

L(θ̂) =
N∑

i=1

1
2

log
det(Ĉi(Ki))

det(Ĉi(Ki−1))
. (8)

We can also understand the previous derivation from the

entropy rate perspective. Under the assumption of stationary

ergodic process y, from the general asymptotic equipartition

property, we know

−log P (y(1), . . . , y(T )) → H(y(1), . . . , y(T )),

and the definition of entropy rate is

H(y) � lim
T→∞

H(y(1), . . . , y(T ))
T

.

Then 1
2 log (2πe) det(Ci(Ki))

det(Ci(Ki−1))
= − 1

T log P (yi) can be inter-

preted as the entropy rate of yi. That is to say, the estimation

of the likelihood function is equivalent to the entropy rate es-

timation. Let hi � det(Ci(Ki))/det(Ci(Ki−1)), which is a

one-to-one monotonic mapping of the entropy rate of yi.

4. MEMORY LENGTH ESTIMATION

From the previous discussion, we know that memory lengths,

Ki, i = 1, . . . , N , are needed to calculate the likelihood.

Given a sequence {z(t)}, t = 1, . . . , T , the problem of mem-

ory length estimation is the same as finding a minimum

downsampling rate K, such that the downsampled sequence

{zK(t)} is i.i.d.. A hypotheses test method is proposed by [3]

to estimate the minimum downsampling rate for real-valued

data. We extend this method to complex-valued data. By

assuming {zK(t)} is generated by an autoregressive (AR)

model, we have the following hypothesis test:

H0 : The AR order of {z̄d,r(n)} is zero.

H1 : The AR order of {z̄d,r(n)} is positive.

Hypothesis H0 means {zK(t)} is i.i.d., otherwise the samples

are dependent. We use the MDL criterion to estimate the AR

order q as [8]:

q̂ = arg min
q

{
Td log σ2

q + q log(Td)
}

,
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where σ2
q is the variance of the prediction error, and Td is the

downsampled sample size.

5. ORDER ESTIMATION

From the point of view of principal component analysis, the

signal subspace should be the mixture of signal and noise,

and the noise subspace should only contain noise. So, for

the i.i.d. case, the signal subspace has higher energy than the

noise subspace. For the case with dependent samples, this

property translates to the signal subspace having higher en-

tropy rate than the noise subspace. We thus distinguish the

two subspaces via this property. Without loss of generality,

we assume yi is zero mean. To address sample dependence

in the observations, we consider the following two models.

5.1. Model by entropy rate
For the first dependency model the entropy rates are assumed

to be the same in the noise subspace.

y1 ∼ N : {0, h1}
...

yM ∼ N : {0, hM}

yM+1 ∼ N : {0, h̄}
...

yN ∼ N : {0, h̄}
X = UY,

where N : {0, h} refers to zero mean Gaussian random pro-

cess with entropy rate h. The parameters for this model are

{h1, . . . , hM , h̄,U}. Using the likelihood in (8), the MDL cri-

terion for this model is

Jh =
M∑
i=1

log hi+(N−M) log h̄+
M(2N − M) log T

2T
(9)

and the estimators for hi and h̄ are given by ĥi = det(Ĉi(Ki))

det(Ĉi(Ki−1))

and ˆ̄h = 1
N−M

∑N
i=M+1 ĥi respectively.

5.2. Model by autocorrelation matrix
For the second dependency model, the autocorrelation matri-

ces are assumed to be the same in the noise subspace.

y1 ∼ N : {0,C1}
...

yM ∼ N : {0,CM}

yM+1 ∼ N : {0, C̄}
...

yN ∼ N : {0, C̄}
X = UY,

where N : {0,Ci} refers to zero mean Gaussian random pro-

cess with a Ki × Ki autocorrelation matrix Ci. The param-

eters for this model are {C1, . . . ,CM , C̄,U}. Since Ci has

Toeplitz structure and is complex, it has 2Ki − 1 free param-

eters. Using the likelihood in (8), the MDL criterion for this

model is

JC =
M∑
i=1

log
det(Ci(Ki))

det(Ci(Ki−1))
+ (N − M) log

det(C̄(K̄))
det(C̄(K̄−1))

+

(
M(2N − M − 2) +

∑M
i=1 2Ki + 2K̄

)
log T

2T
,(10)

−5 0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4

4.5

SNR (dB)

E
st

im
at

ed
 o

rd
er

M

M̂h

M̂C

M̂λ

Fig. 1. Performance comparison as a function of SNR.

and the estimation for ˆ̄C is ˆ̄C = 1
N−M

∑N
i=M+1 Ĉi.

Both sample dependency models are generalizations of

the i.i.d. model. Order is estimated using a likelihood that

is formed using the whole data set. If samples are i.i.d., K̄ =
1, Ki = 1, i = 1 . . . M , then hi = Ci = λ2

i and h̄ = C̄ =
σ2. For this case, both (9) and (10) reduce to (2). Compar-

ing with the model by entropy rate, model by autocorrelation

matrix is more specific. The assumption that autocorrelation

matrices are same in noise subspace requires not only entropy

rate but also dependency structure to be same in the noise

subspace, and more parameters need to be estimated.

6. EXPERIMENTAL RESULTS

In this section, we use simulations to study the properties of

the order detection method we introduced that uses entropy

rate. We use a moving average model to simulate the observed

samples. The experiment default settings are M = 4 Gaus-

sian signal vectors, N = 10 Gaussian noise vectors, mem-

ory lengths Ki = 10, i = 1, . . . , M, K̄ = 10, sample size

T = 1000, and SNR = 5 dB. For each experiment below we

vary one parameter of the default settings. Then we compare

the order estimation performance of

• M̂h: Order estimated by (9).

• M̂C: Order estimated by (10).

• M̂λ: Order estimated by the downsampling method

proposed in [3], as this method is shown to perform

better than both the methods given in [2] and [1] when

samples are not i.i.d.

Experiment 1: In this experiment, we compare the per-

formance as we vary the SNR. From Fig. 1, we can see the

performance of all three methods degrade as SNR decreases,

and M̂h yields the best performance.

Experiment 2: In this experiment, we compare the perfor-

mance as we vary the sample size T . As shown in Fig. 2, we

can see, for all three methods, that larger sample size leads to

better performance, and M̂h yields the best performance.
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Fig. 2. Performance comparison as a function of sample size.
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Fig. 3. Performance comparison as a function of number of signals.

Experiment 3: Next, we compare the performance as we

vary the signal number M . As observed from Fig. 3, the per-

formance of all three methods degrade with increasing signal

number, and again M̂h yields the best performance.

Experiment 4: We compare the performance as we vary

the memory length K. From Fig. 4, as the memory length

increases, the performance of all three methods deteriorate.

However, the best performance still achieved by M̂h.

As observed in these four experiments, the performance of

M̂h is always better than the other two order estimators, espe-

cially when the sample size is small, the SNR is low, and the

memory length is high. As proved in [1], the MDL criterion

is consistent as the sample size T → ∞. So, the performance

of the method proposed in [3] is poor because the sample size

used for order detection decreases significantly after down-

sampling. The reason that estimation performance of M̂h is

better than M̂C is that estimation of hi, which is a scalar, is

more likely to be accurate than estimation of Ci, which is a

matrix and has more parameters need to be estimated.

7. DISCUSSION

In this paper, we propose a new order estimation method for

dependent samples, and provide its interpretation using en-
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Fig. 4. Performance comparison as a function of memory length.

tropy rate. We show by experiment that M̂h yields best per-

formance among the two models proposed in this paper and

the method proposed in [3], which has been shown to be supe-

rior to the previous approaches. Although we only consider

circular-valued complex data in this paper, the new method

can be extended to noncircular complex-valued data.
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