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ABSTRACT

Detecting the number of signals in a given number of obser-
vations, or order detection, is one of the key issues in many
signal processing problems. Information theoretic criteria are
widely used to estimate the order. In many applications, data
does not follow the independently and identically distributed
(i.i.d.) sampling assumption. Previous approaches address
dependent samples by downsampling the dataset so that exist-
ing order detection methods can be used. By downsampling
the data, the sample size is decreased so that the accuracy of
the order estimation is degraded. In this paper, we introduce
two linear mixture models with dependent samples. The like-
lihood for each model is developed based on the entire data set
and used in an information theoretic framework to improve
the order estimation performance for dependent samples. Ex-
perimental results show performance improvement using this
new method.

Index Terms— Order detection, Entropy rate, MDL cri-
teria.

1. INTRODUCTION

A key issue when using a linear signal mixture with additive
noise model is the detection of the number of signals. The
seminal paper [1] introduced the use of information theoretic
criteria (ITC) for the order selection problem. The ITC meth-
ods of [1] are now widely used for order selection because the
order is estimated without requiring the user to specify a sub-
jective threshold. In [1], the samples are assumed to be i.i.d.
in order to calculate the likelihood. For many applications,
the i.i.d. sampling assumption is violated. This paper focuses
on order estimation without an i.i.d. sampling assumption,
i.e., when the samples are dependent.

A reasonable assumption in practice is that the sample de-
pendence is finite, i.e., there is finite memory in the observa-
tions. In the sequel, we restrict ourselves to finite memory,
which allows for dependency to be removed by downsam-
pling as done in previous approaches that address the prob-
lem. An intuitive method using an entropy rate matching prin-
ciple is proposed in [2] to estimate the downsampling depth
and then estimate the number of signals using [1]. There are
several drawbacks for this method. First, a subjective thresh-
old is needed to estimate the downsampling depth. Second,
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this method only uses a subset of the available samples to esti-
mate the order. For example, only 10% of data will be used if
downsampling depth is 10. Third, the calculated likelihood is
for the downsampled data set, not for the whole data set. An
improved method is given in [3]. The downsampling depth
is estimated by using ITC to avoid specifying any subjective
threshold. As in [2], the downsampled data is used to calcu-
late the likelihood. Since the maximum likelihood estimator
has large sample optimality properties and can be heavily bi-
ased when using small sample sizes, using all the samples
in the estimation is likely to significantly improve the perfor-
mance as we show here.

In this paper, we introduce two different models for gener-
ating sample dependence. Then we calculate their respective
likelihoods, using all the available samples, and determine
how many free parameters are available, as required to imple-
ment ITC methods. Also, we show that this new method is a
generalization of the method given in [1]. Simulation results
show this new method can improve the performance, espe-
cially for small data sets, low signal to noise ratios (SNR),
and high memory lengths.

2. BACKGROUND
2.1. Linear Mixture Model

We consider the commonly assumed linear signal model with
additive noise:

x(t) = As(t) +n(t), t=1,...,T, (1)
where ¢ is the discrete time index, x(¢) is the N x 1 complex-
valued observed random vector of the ¢th sample, A is a full
column rank N x M complex-valued mixing matrix with
0 <M < N,s(t) is the M x 1 complex-valued latent Gaus-
sian source vector, n(t) is an N x 1 complex-valued white
Gaussian noise vector, which is isotropic. In this paper, sig-
nal and noise are only considered to be circular complex, so
that the complete second-order statistics are captured by the
ordinary covariance matrices. Sample size is T". The problem
is to detect model order M. The compact form for (1) is X =
AS+N, where X = [x(1),...,x(T)],S = [s(1),...,s(T)]
and N = [n(1),...,n(T)].

2.2. ITC Based Order Estimation

Order estimation via ITC can be achieved using, among oth-
ers, Akaike’s Information Criterion (AIC) [4], Bayesian In-
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formation Criterion (BIC) [5] or equivalently Minimum De-
scription Length (MDL) [6]. A general form for ITC is given
by

M = argmin{—alog P(x(1).,....x(T)|0a)+r(0)n(T)},

where P(x(1),...,x(T)|0 ) is the joint probability density
function, (@) indicates all free parameters for order M.
For AIC, = 2 and n(T") = 2. For MDL and BIC, o = 1
and 1(T) = 0.5logT. For model (1) with i.i.d. samples, it
is shown in [1] that order detection using MDL is consistent
as T' — oo, and the AIC is shown to be inconsistent. Hence,
we use the MDL criterion in this paper. If x is i.i.d., Gaussian
distributed, then the MDL order selection criterion [1,7] is

M
M(@2N — M)logT
_ 2 2
JA_E_I log \i +(N—M)log o=+ 5T , (2)
where )\; is the ith largest eigenvalue of C, = XX /T,

2 N 2 . H .
0% = A Qe 417, and superscript ** denotes conju-

gate transpose.

3. LOG LIKELIHOOD CALCULATION FOR
DEPENDENT SAMPLES

The unitary linear transform Y = U X yields (second-
order) uncorrelated principal components [y, ...,y n|, where
U is the eigenvector matrix of C,. This holds when the sam-
ple size T" — oo, even for dependent samples. Assuming y; is
stationary and has finite memory of length K, the likelihood
function is given by

£60) = —+ - log P(X) 3)

10g P( Yz)> “

10g{P yi(D)] - Plyi(2)|ys(1)] - - -

(&)

N T/ T/
-1 i
:ZT<ZlogP lya(t, K;) —ZlogP[yi(t,Ki—l)]>
i=1 t=1 t=2
N 1 T/ T/
z2,<21ogP lyi(t, K3) —ZlogP[yi(t,Ki—l)]>
i=1 1 Ni=1 t=1

(6)
N 1Y
=S log(2m) + 53 ((logdet Z-(Kl.))—i—tr(C;(}(i)Ci(Ki)))
=1

_ ( log det(Ci(Kifl)) + tr(C7(K _1)Ci(Ki1)))> , @)

[yi(), ..., yi(t+L—
1) autocorrelation ma-

where T/ & T—K;+1,and y;(t, L) =
1)]T The K, XKZ‘ and (K,L—l) X (KL—
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trix of y; are given by C;(x,) and CZ( K,—1)- The correspond-

ing sample autocorrelation matrices C;(x i(x;) and Cix i(K;—1) are
defined by
Tl
Ciw) Zyz (t, L)y{ (t, L),
L=

where L. = K; and K; — 1 respectively. Since y; is Gaussian
distributed, uncorrelatedness implies independence. Hence,
(4) follows (3). By the assumption that y; has finite mem-
ory K;, we have (5). When the sample size " — oo, the
ratio (T/T') — 1, thus the approximation in (6) holds. By
the assumptlon of statlonarlty of y;, we arrive at (7) from (6).
Using CZ(K ) and CZ(K _1) as the estimation of C;(g,) and
Ci(x,—1) and omitting terms that do not depend on the pa-
rameters, we can write the likelihood function £ as

L@ - Z det(Cik,))

og > : (3)
part det(Ci(x, 1))

We can also understand the previous derivation from the
entropy rate perspective. Under the assumption of stationary
ergodic process y, from the general asymptotic equipartition
property, we know

—log P(y(1),...,y(T)) — H(y(1),...,y(T)),
and the definition of entropy rate is
a o Hy@d),...,y(T))
e S
det(Cix;))

Then 1 log (27‘[‘6)m = —1 log P(y;) can be inter-
preted as the entropy rate of y;. That is to say, the estimation
of the likelihood function is equivalent to the entropy rate es-
timation. Let h; £ det(Cj(x,))/det(Cy(x,—1)), which is a
one-to-one monotonic mapping of the entropy rate of y;.

4. MEMORY LENGTH ESTIMATION

From the previous discussion, we know that memory lengths,
K;,i = 1,..., N, are needed to calculate the likelihood.
Given a sequence {z(¢)},t = 1,...,T, the problem of mem-
ory length estimation is the same as finding a minimum
downsampling rate K, such that the downsampled sequence
{zk(t)} is ii.d.. A hypotheses test method is proposed by [3]
to estimate the minimum downsampling rate for real-valued
data. We extend this method to complex-valued data. By
assuming {zx (t)} is generated by an autoregressive (AR)
model, we have the following hypothesis test:

Hy : The AR order of {Z4,(n)} is zero.
H, : The AR order of {z4,(n)} is positive.

Hypothesis Hy means {zx (¢)} is i.i.d., otherwise the samples
are dependent. We use the MDL criterion to estimate the AR
order q as [8]:

j = arg min {7 log 03 + qlog(Td)} ,
q



where 03 is the variance of the prediction error, and 7} is the

downsampled sample size.

5. ORDER ESTIMATION

From the point of view of principal component analysis, the
signal subspace should be the mixture of signal and noise,
and the noise subspace should only contain noise. So, for
the i.i.d. case, the signal subspace has higher energy than the
noise subspace. For the case with dependent samples, this
property translates to the signal subspace having higher en-
tropy rate than the noise subspace. We thus distinguish the
two subspaces via this property. Without loss of generality,
we assume y; is zero mean. To address sample dependence
in the observations, we consider the following two models.

5.1. Model by entropy rate

For the first dependency model the entropy rates are assumed
to be the same in the noise subspace.

yi~N:{0,h} yare1 ~ N :{0,h}
yu ~N {0, har} yn ~ N {0, h}
X =1UY,
where A : {0, h} refers to zero mean Gaussian random pro-
cess with entropy rate h. The parameters for this model are
{h1, ..., har, h,U}. Using the likelihood in (8), the MDL cri-

terion for this model is
M

Jp = Zloghi—i—(N—M)logf_H—

i=1

M(2N — M)log T

2T ©)

and the estimators for h; and h are given by h; = FRTCRm—

andﬁ =

7 Zi:MH h; respectively.

5.2. Model by autocorrelation matrix

For the second dependency model, the autocorrelation matri-
ces are assumed to be the same in the noise subspace.

y1~N:{0,C;} ym+1 ~N:{0,C}

yu ~ N :{0,Cun} yn ~N :{0,C}
X =1UY,

where AV : {0, C; } refers to zero mean Gaussian random pro-
cess with a K; x K; autocorrelation rnaErix C;. The param-
eters for this model are {Cy,...,Cys, C,U}. Since C; has
Toeplitz structure and is complex, it has 2K; — 1 free param-
eters. Using the likelihood in (8), the MDL criterion for this
model is

det(Cy(x,))
J
o Z gdet Cik,-1))

+ (N — M)log — )7
det(C(f(_l))

(M(2N =M =2)+ 31, 2K, + 2K ) log T
o

+ ,(10)

dCt(C,(K ))
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Fig. 1. Performance comparison as a function of SNR.
and the estimation for C is C = M ZZ M1 C..

Both sample dependency models are generalizations of
the i.i.d. model. Order is estimated using a likelihood that
is formed using the whole data set. If samples are i.i.d., K =
1,K;, =1,i=1. Mthenhfcif)\Qandh*C*
o2. For this case, both (9) and (10) reduce to (2). Compar-
ing with the model by entropy rate, model by autocorrelation
matrix is more specific. The assumption that autocorrelation
matrices are same in noise subspace requires not only entropy
rate but also dependency structure to be same in the noise
subspace, and more parameters need to be estimated.

6. EXPERIMENTAL RESULTS

In this section, we use simulations to study the properties of
the order detection method we introduced that uses entropy
rate. We use a moving average model to simulate the observed
samples. The experiment default settings are M = 4 Gaus-
sian signal vectors, N = 10 Gaussian noise vectors, mem-
ory lengths K; = 10,7 = 1,.. M, K = 10, sample size
T = 1000, and SNR = 5 dB. For each experiment below we
vary one parameter of the default settings. Then we compare
the order estimation performance of

° M\h: Order estimated by (9).
° m : Order estimated by (10).

° M\A: Order estimated by the downsampling method
proposed in [3], as this method is shown to perform
better than both the methods given in [2] and [1] when
samples are not i.i.d.

Experiment 1: In this experiment, we compare the per-
formance as we vary the SNR. From Fig. 1, we can see the
performance of all three methods degrade as SNR decreases,
and MI yields the best performance.

Experiment 2: In this experiment, we compare the perfor-
mance as we vary the sample size T'. As shown in Fig. 2, we
can see, for all three methods, that larger sample size leads to
better performance, and M\h yields the best performance.
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Experiment 3: Next, we compare the performance as we
vary the signal number M. As observed from Fig. 3, the per-
formance of all three methods degrade with increasing signal
number, and again M; yields the best performance.

Experiment 4: We compare the performance as we vary
the memory length K. From Fig. 4, as the memory length
increases, the performance of all three methods deteriorate.
However, the best performance still achieved by ]\/4;

As observed in these four experiments, the performance of
Mz is always better than the other two order estimators, espe-
cially when the sample size is small, the SNR is low, and the
memory length is high. As proved in [1], the MDL criterion
is consistent as the sample size 7' — oco. So, the performance
of the method proposed in [3] is poor because the sample size
used for order detection decreases significantly after down-
sampling. The reason that estimation performance of ]\/4; is
better than JT/[E is that estimation of h;, which is a scalar, is
more likely to be accurate than estimation of C;, which is a
matrix and has more parameters need to be estimated.

7. DISCUSSION

In this paper, we propose a new order estimation method for
dependent samples, and provide its interpretation using en-
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Fig. 4. Performance comparison as a function of memory length.

tropy rate. We show by experiment that M\h yields best per-
formance among the two models proposed in this paper and
the method proposed in [3], which has been shown to be supe-
rior to the previous approaches. Although we only consider
circular-valued complex data in this paper, the new method
can be extended to noncircular complex-valued data.
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