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ABSTRACT

The problem of learning a data-adaptive dictionary for a very large
collection of signals is addressed. This paper proposes a statistical
model and associated variational Bayesian (VB) inference for simul-
taneously learning the dictionary and performing sparse coding of
the signals. The model builds upon beta process factor analysis (BP-
FA), with the number of factors automatically inferred, and posteri-
or distributions are estimated for both the dictionary and the signals.
Crucially, an online learning procedure is employed, allowing scala-
bility to very large datasets which would be beyond the capabilities
of existing batch methods. State-of-the-art performance is demon-
strated by experiments with large natural images containing tens of
millions of pixels.

Index Terms— Dictionary learning, online learning, variational
Bayes, factor analysis, beta process

1. INTRODUCTION

It has been known that learning a dictionary adapted to a specific set
of signals can yield significantly better performance than using an
off-the-shelf dictionary or basis, such as the discrete cosine trans-
form (DCT) or wavelet basis [1]. Typically, a good dictionary is
“similar” to the data in the sense that each signal can be well approx-
imated by a linear combination of a few dictionary atoms. Finding
such a representation, given a dictionary, is the goal of sparse cod-
ing [2, 3]. Dictionary learning and sparse coding are often jointly
employed for many applications, such as image denoising [1] and
interpolation/inpainting [4]. Numerous methods are available, for
instance [1, 5, 4, 6, 7]. However, the majority of these methods are
based on batch learning, i.e., they require the entire data to be load-
ed into memory, and hence do not scale well to very large datasets
of, say, millions of signals. Such datasets require online learning, in
which portions the data are processed sequentially.

Recent work [8] has shown the ability of online methods to
successfully perform dictionary learning and sparse coding for very
large images. However, [8] is an optimization-based approach which
does not learn a statistical model for the signals. In this paper, we
propose a statistical model based on beta process factor analysis (BP-
FA) and associated online variational Bayesian (VB) [9] inference
algorithm, which yields posterior distributions rather than point esti-
mates for the dictionary and signals. The BPFA is related to the beta
process (BP) [10, 11, 6, 7], which is a nonparametric Bayesian model
allowing automatic determination of the number of useful dictionary
atoms.

Similar to [12], who learn topic models for very large text collec-
tions with online VB inference, we sequentially update the posterior
parameters by natural gradient descent. Under appropriate choices
for the learning rate, this approach is guaranteed to converge [13].
Our online BPFA algorithm is able to efficiently compute posterior
distributions for datasets of tens of millions of signals, which would
be infeasible using batch inference methods, e.g., Gibbs sampling
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as in [6, 7]. This is demonstrated by inpainting (i.e., filling missing
pixels in) natural images with 12 Mpixels, similarly to [8].

The remainder of the paper is organized as follows. Section 2
briefly reviews the BPFA model applied to images, Section 3 de-
scribes our proposed online VB inference algorithm, and Section 4
contains experimental results. The paper is concluded in Section 5
with a discussion of the results and final comments.

2. BPFA FOR DICTIONARY LEARNING IN IMAGES

The problem of dictionary learning for the dataset X = {@;}i=1,...,n
can be cast as factor analysis with ; = Dw,; + €;, where
D € RP*¥ is a dictionary with K atoms (factor loadings in a
factor-analysis formulation), w; € RE are vectors of coefficients
(factor scores) and €; is a residual term that encompasses noise and
deviation from the linear factor model; this deviation is assumed
small. As an example, we may process images in blocks (patches)
of size B x B, represented as vectors &; € RY , where P = B?is
the number of pixels in each patch, and 2 = 1, ..., N with N equal
to the number of patches.

Following the original BPFA model [6, 7], it is assumed
that the vectors w; are sparse. This is enforced by placing a
beta-Bernoulli prior on w;. Specifically, define variables z; ~
[T, Bernoulli(my,) and 7 ~ [[r_, Beta(ao/K, bo(K — 1)/K)
where 7, is the k-th component of 7r. It can be shown that this
construction favors sparse binary vectors z;, as K grows large. The
role of z; is to select a subset of the columns of D for representing
x;. The full model is

z;, = Dw; +€; w; =2;O8; (D
di, ~ N(0, P '1Ip) si ~ N(0,7; 'Tk)

_ bo(K —1
eiNN(Oa’Ye 1IP) ﬂkNBeta(%?v%)

~s ~ Gamma(co, do) ~Ye ~ Gamma(eq, fo)

where dj, represents the kth column (atom) of D, ® represents the
elementwise or Hadamard vector product, I» (Ix) represents a P x
P (K x K) identity matrix, and {z;};—1,n are drawn as described
above. The priors are independent for all 7 and k, and each s; has its
own precision vs. The constants {ao, bo, co, do, €0, fo} = I are hy-
perparameters, which we collect in vector I'. The construction in (1),
with the beta-Bernoulli prior for {z; }i—1,..., n, is henceforth referred
to as the beta process factor analysis (BPFA) model. Inference can
be performed using variational Bayes (VB) or Markov chain Monte
Carlo methods such as Gibbs sampling. Typically, batch implemen-
tations (as in [7]) are used; however, as discussed above, batch al-
gorithms do not scale to very large datasets. Below, we describe an
online VB method which obviates this problem.
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3. ONLINE VARIATIONAL BAYES ALGORITHM

Variational Bayes (VB) inference [9, 11] for the aforementioned BP-
FA model, given training data X and hyperparameters I', is based
on approximating the true posterior p(D, z, s, 7, vs, 7| X, T) by
members of a tractable class of distributions. In our case, this is
chosen to be the class of fully factorized distributions of the form
q(D,z,8,m,7s,7) = q(D)q(2)q(s)q(m)q(7s)q(7e). Denoting
the latent variables we wish to infer as H = {D, z, 8, 7, Vs, Ve }»
VB inference maximizes the Evidence Lower BOund (ELBO):

logp(X|T') > L(X, H) =Eq[logp(x, D, 8,2, m,7s,7)]  (2)
- Eq [lOg q(D7 8,2, T, s, 76)]

with respect to ¢(H). Maximizing the ELBO is equivalent to mini-
mizing the Kullback-Leibler (KL) divergence between ¢(H) and the
true posterior p(H|X, T').

Before further specifying how to optimize ¢(H), we describe
how to adapt the standard VB formulation to the online setting. We
carry out online learning by stochastic coordinate ascent, in a man-
ner analogous to [12]. The dataset X is randomly partitioned into
T subsets (called minibatches) of vectors with N, vectors per mini-
batch t. We use constant N; for all £. In the limit, we can process
one patch at a time by setting 7' = N and N; = 1, or revert to a
batch algorithm by setting 7" = 1 and N; = N. The advantages of
this procedure are two-fold: (i) it is only necessary to store N; vec-
tors at a time in memory, independently of IV; (ii) by processing the
data in a random sequence, we gain robustness (albeit not immunity)
to local optima and maintain convergence guarantees [13]. We now
write ¢(H) taking into account the minibatch index ¢:

q(dk) = N(“’kv zk)
q(z¢ix) = Bernoulli(nix)
4(7:) = Gamma(c', )

= NV, Qi) (3)

= Beta(ﬁk, Tgk)

q(seir)
q(mx)
q(7ye) = Gamma(e', ).

In the above distributions, Siik, Viik, Qtik, 2t and nyp all refer
to the i—th patch in minibatch ¢ and to the k-th dictionary atom.
The next step is to derive estimates for the posterior parameters
M, Ek, Vtik, Qtik’ Ntiks T1ks T2k, C/, d/, e’, f/. The bound (2) eX-
pands to

= ZZ{Eq[logp(fcti|D,Zn‘,Sn‘,’ye)] 4)
P

+ Z{Eq [log p(stir|vs)]

k=1
— Eq[log q(seir)] + Eq[log p(2eik |mk)]

+ Y {Ey[logp(dy|0, %IP)} -

— Eq[log q(zeix )]}

Eq[log q(dy)]

+ Eq[log p(m|ao, bo)] — Eq[log q(mi)]}/T
+ (Eq[log p(vs|co, do)] — Eqllog g(7s)]

+ Eq[log p(veleo, fo)] — Eqllog a(ve)]) /T}
= Zé(wt, Sty 2t, D, T, Ys, Ve )

where {(x:, 8¢, z¢, D, 7, s, ve) denotes the contribution of mini-
batch ¢ to the ELBO. As in [12], the ELBO is written as a sum over
t, thereby enabling an online inference method.

The expectations involved are taken under the variational distri-
bution ¢:

Eqllogs] = (') —logd',  Eglloge] = ¥(e') —log f* (5)
Eyfin ()] = 9(52 + A () - (2L
Eyfin (1 - m)] = p(E = 1 v - i)
iy

Eqlsisk] = visk + Quar, Eqldi, di] = py puy + S

Eq[(st: © Zti)DTD(Stz‘ O} Zm‘)T} =

K K
Z Z Vtikntik’/tik’ntik’ﬂguk’ + an‘qu [Sfik]Eq

k=1 kK’ k=1

[di dy/]

where (nu) = Ei’l Neix and 1(.) represents the digamma func-
tion. Maximizing ¢(-) for minibatch ¢, with respect to the parameters
of g, leads to the following estimates.

3.1. Per-minibatch parameter estimates
For q(dy), N M
B = (PIp + 5 - ; Eqlstanlmeir) " (©6)

Ny

N _
H, = Ve > veanmeinEq[X 5",
i=1

where X,;* is the reconstruction of the i-th vector in minibatch ¢
using all but the k—th atom. For q(s;tx),

Quiv = (vs + 7eBq[dx dimean) ™ 7
Viik = YeQuintty NinEq[ X1 "]
The estimate for g(z¢x) is
q(ztik = 1) o< exp [Eq[log mx]) X
exp (= S{Eq[sTin]Bq[dl di] — 2pf v2inBq [X5"1})
Eq[1 —log Wk])7

and evaluating the expected value yields

q(zeix = 0) x exp (

q(zur = 1)
q(ztie = 1) + q(zei = 0)

Eqlztin] = neir = ()

We let z¢5 = 1if nesre > 0.5 and 2z = 0 otherwise. For ¢(7) the
estimates are
bo(K — 1) N

+ N — —{(nuw),

(new),  Tor = % N,
)

Tik = K+N

and for ¢(ys) and g(v.) we have

NK NP
c':co—f—T d = d—l——Zl/nutz e—eo—ﬁ—T

f'=rfot+ o Z{mnmn -2 Z MeikVeikty @i (10)

Eq[(sti © z:)D" ' D(s84; @ 244)" ]}
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3.2. Global parameter updates

Let A = {py, Xk, Tk, T2k, ¢, d' €', f'} be a vector containing
the parameters of g that are not specific to the minibatch and data
indices ¢ and i. Define also A as the estimates of A based solely on
the most recent minibatch, as computed in Section 3.1. We call A
the global parameters. These are sequentially updated by computing
a weighted average between their previous value and A:

A (1—p)A+ piA. (1D

where p; is the weight given to each new minibatch. Following [12],
in the above estimates the contribution of each datum 7 is weighted
by N/Ny, so as to make A equal to the batch parameter estimate
we would obtain if the latest minibatch constituted the entirety of
the dataset. The weight p;, also called the learning step, is chosen
according to the schedule p; = (10 + ¢t)~", where k € (0.5,1]
controls the rate of decay of the contribution from old minibatches
and 79 > 0 serves to slow down the initial iterations. It is shown
in [12, 13] that this procedure converges and is equivalent to sto-
castic natural gradient ascent. The natural gradient is obtained by
multiplying the standard gradient of the objective function by an ap-
propriate metric matrix (in our case, the inverse Fisher information
matrix for g). The overall method is summarized in Algorithm 1.

Algorithm 1 Online variational Bayes for Dictionary Learning

1: Define pr = (10 + )"
2: Initialize A" by MCMC on a small random subset of X
3: for t =2to oo do

4: while Stopping criterion is not met do

5 for k=1to K do

6: Estimate p;, and 3y,

7 Fori =1,..., N: Estimate neik, Quir and vy
8: Estimate 715 and 7oz

9: end for
10: Update ¢/, d’, ¢, f'
11: end while

12: Compute A ~
130 AW =(1-p)A"Y 4 pA
14: end for

4. EXPERIMENTS

We demonstrate the performance of our algorithm in two image in-
painting tasks, where we do not observe all the pixels in each patch.
Hence, for patch ¢ we do not directly observe x;, but rather random
projections y, = A;x;, where A; € R™ *P is a concatenation of
random rows of the P x P identity matrix I» and we observe m;
pixels. The BPFA statistical model is well suited to this missing data
problem [7]. For all experiments, we used K = 256 atoms and set
the hyperparameters to ag = bgp = 1,¢c0 = do = eo = fo = 1079,
which are standard “flat” values. The online learning parameters
were set to 7o = 1000 and = 0.5, and we divided the dataset in
T = 10, 000 minibatches of size N; ~ 1200, which we found to be
a good compromise between computational efficiency and conver-
gence stability. For the first minibatch only, we initialize the model
using the Gibbs sampling algorithm in [7].

The first experiment consists of taking the well-known “castle”
RGB image of size 321 x 481, removing 50% of the pixels uniformly
at random and then reconstructing. The result is shown in Figure 1,
and we obtain a peak signal-to-noise ratio (PSNR) very similar to
that of the batch Gibbs sampling algorithm from [7] on the same
image.
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Table 1. Peak signal-to-noise (PSNR) for the reconstruction
with varying percentage of missing-at-random pixels and for text-
damaged image

90% | 80% | 70% | 60% | 50% text
3453 | 40.24 | 43.31 | 45.24 | 46.72 | 45.73

PSNR(dB)

The second experiment is a difficult inpainting task, using the
same RGB “bird” image of size 3000 x 4000 (12 Mpixel) as in [8].
Due to the use of overlapping patches, N is slightly under 12 mil-
lion. We restore the image from two types of damage: superimposed
text, and a varying percentage of missing-at-random pixels (which
are set to zero). The patches are of size 8 x 8 x 3. Unlike [8],
we simultaneously learn a dictionary and reconstruct the image. A
non-parallelized MATLAB implementation of our Algorithm 1 takes
approximately 18 hours for one full pass through the dataset (one e-
poch). The PSNR results can be seen in Table 1, and we illustrate
the reconstruction in Figure 2, for the cases of superimposed text and
90% missing pixels. For the latter, we also show the reconstruction
using nearest-neighbor (NN) interpolation with neighborhood size
five. Our approach achieves better PSNR (34.53 dB vs. 16.65 dB)
and avoids the multiple artifacts present in the kNN version. Note
that, while [8] do not report PSNR, their reconstruction from super-
imposed text is visually indistinguishable from ours. The posterior
mean of the learned dictionary is shown in Figure 3, and only 41
out of 256 atoms are used among all patches; individual patches use
significantly less than 41 atoms. We also obtain the posterior vari-
ance, which is shown in Figure 2. Note that the pixels situated in
edges and high-complexity textures have higher variance than those

located in smooth regions.
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Fig. 1. Inpainting example on a medium-sized image with 50%
missing pixels (left). The reconstructed image (right) has P-
SNR=36.53 dB, virtually identical to that of a batch implementation
using Gibbs sampling [7] (PSNR=36.45).

5. CONCLUSION

We have presented an online variational Bayes algorithm for analy-
sis of very large datasets, applied to image inpainting. The algorithm
infers a BPFA statistical model, enjoys converge guarantees and can
be interpreted as natural gradient optimization. State-of-the-art per-
formance is achieved in inpainting problems with very large natural
images. This is one of very few methods capable of simultaneous-
ly performing dictionary learning and sparse coding for images of



Fig. 2. Inpainting example on a 12-Mpixel image. Top left: Image damaged by text; Top middle: reconstruction (PSNR=45.73 dB); Top
right: variance. Bottom left: Image with 90% missing pixels (shown as black); Bottom middle: reconstruction (PSNR=34.53 dB); Bottom
right: reconstruction using NN interpolation with neighborhood size five (PSNR=16.65 dB, multiple artifacts). Best viewed in color with

electronic zooming.

Fig. 3. Posterior mean of the learned dictionary for the 12 Mpixel
“bird” image. There are 256 atoms, but only 41 are used.

tens of millions of pixels while also inferring the number of factors.
Additionally, and unlike other methods, (approximate) full posterior
distributions are learned rather than point estimates. This enables
further analysis and allows other problems to be considered, such as
topic modeling and active learning.
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