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ABSTRACT

A continuous-valued infinite relational model is proposed as a so-
lution to the co-clustering problem which arises in matrix data or
tensor data calculations. The model is a probabilistic model utiliz-
ing the framework of Bayesian Nonparametrics which can estimate
the number of components in posterior distributions. The original
Infinite Relational Model cannot handle continuous-valued or multi-
dimensional data directly. Our proposed model overcomes the data
expression restrictions by utilizing the proposed likelihood, which
can handle many types of data. The posterior distribution is esti-
mated via variational inference. Using real-world data, we show that
the proposed model outperforms the original model in terms of AUC
score and efficiency for a movie recommendation task. (111 words)

Index Terms— Machine learning, Bayesian methods, Dirichlet
Process, Variational Bayes, Infinite Relational Model

1. INTRODUCTION

Recently, there has been growing interest in the analysis of relational
data, such as hyperlinks among webpages, historical lists of items
purchased by customers, and so on. Many models have been pro-
posed for this kind of analysis. The stochastic block model (SBM)
[1] formulates the co-clustering problem in a probabilistic model.
The Infinite Relational Model (IRM) [5] and the Infinite Hidden Re-
lational Model (IHRM) [8] are both extensions of the SBM in a
Bayesian Nonparametrics (BNP) [2, 3] framework. The IRM par-
titions data into clusters, whereas the Mixed Membership Stochas-
tic Block model (MMSB) [6] allows objects belonging to multiple
clusters. The Frequency-based Infinite Relational Model (FIRM) [7]
accounts for the frequency of the occurrence of a relational data.
Dynamic IRM [9] is the time-evolving IRM. These models repre-
sent binary states or frequency. In many real-world datasets, how-
ever, the relation is not“ simply 1 or 0”or an integer. In addition,
although Bayesian Co-Clustering [10] can express any type of data
by changing the likelihood, it does not model the presence of data
and arbitrary data expression simultaneously. Therefore, we extend
the infinite relational models to one that permits the relation rep-
resentation to be a continuous value or multidimensional data and
that simultaneously predicts whether the relation is present or not
present. We report a quantitative comparison between the proposed
model and the IRM.

2. INFINITE RELATIONAL MODEL

The IRM is a model that can partition objects in relational data. The
number of clusters is automatically estimated via Dirichlet Process
DP(α,G0). Here, α is a hyperparameter, and G0 is the underlying
base distribution. We use DP via a stick breaking representation
which can be written as follows:

G(θ) =

∞∑
k=1

πkδθk , θk ∼ G0 (1)

πk = Vk

k−1∏
l=1

(1− Vl) , Vk ∼ Beta(1, α) (2)

where π =(π1,π2,π3,· · · ) is a mixing proportion of infinite ele-
ments. The stick breaking representation assumes that Vk is drawn
from the Beta distribution Beta(1, α). The IRM assumes infinite
hidden clusters in ”Type1” (Row) and also in ”Type2” (Column).
For example, let us assume that ”Type1” is ”User” and ”Type2” is
”Movie”, and that a user i belongs to a user cluster k and a movie j
belongs to a movie cluster l. The occurrence of a relation between
user i and movie j is parameterized by parameter ηk,l, which stands
for the likelihood of the presence of a relation between cluster k in
Type1 and cluster l in Type2. The generative model of IRM is as
follows:

πT1|α1 ∼ Stickbreaking(α1) (3)

πT2|α2 ∼ Stickbreaking(α2) (4)

ZT1
i |πT1 ∼ Multinominal(πT1) (5)

ZT2
j |πT2 ∼ Multinominal(πT2) (6)

ηk,l|b1, b2 ∼ Beta(b1, b2) (7)

xi,j |ZT1
i = k, ZT2

j = l, ηk,l ∼ Bernoulli(ηk,l) (8)

xi,j ∈ {0, 1}(1 ≤ i ≤ NT1, 1 ≤ j ≤ NT2) (9)

Z = {ZT1
i , ZT2

j }
i=1,··· ,NT1,j=1,··· ,NT2

, θ = {ηk,l}k,l=1,··· ,∞.
Here, NT1 is the size of T1, NT2 is the size of T2, k indicates

a cluster of T1, and l indicates a cluster of T2.
In (3) and (4), we sample probability proportions πT1 and

πT2 from the stick breaking representation. Objects in T1 are
assigned to clusters in proportion to πT1 which is drawn from
Sticbreaking(α1), objects in T2 are assigned in the same manner.
Then, in each submatrix indicated by the combination of cluster k
in T1 and cluster l in T2, in probability ηk,l, xi,j becomes 1, and in
(1− ηk,l), xi,j becomes 0.
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3. PROPOSED MODEL

3.1. Model formulation

The original IRM does not handle continuous values or multidimen-
sional data directly. In some real-world datasets, there exist various
kinds of relations. For example, movie ratings contain ratings given
by users, and each user has a user-specific rating bias. Getting rid of
such biases is important for user preference analysis of the dataset
[12]. Thus, the learning model for the movie-user relational analy-
sis should be able to also treat real numbers, not only binary data.
By utilizing the proposed continuous model, we can take user spe-
cific biases into account; hence, the clustering performance will be
improved.

If we convert the Bernoulli distribution to a normal distribution
in (8) in order to use continuous values, the model cannot express the
loss of data (in the case of x = 0). Instead of this, we assume that
data occurrence is drawn from the Bernoulli distribution first, and
the continuous value is drawn from the normal distribution second.
This is formulated as follows:

πT1|α1 ∼ Stickbreaking(α1) (10)

πT2|α2 ∼ Stickbreaking(α2) (11)

ZT1
i |πT1 ∼ Multinominal(πT1) (12)

ZT2
j |πT2 ∼ Multinominal(πT2) (13)

ηk,l|b1, b2 ∼ Beta(b1, b2) (14)

Λk,l|Λ0, ν0 ∼ Wishart (Λ0, ν0) (15)

μk,l|m0, ξ,Λk,l ∼ Normal
(
m0, (ξΛk,l)

−1) (16)

xi,j |ZT1
i = k, ZT2

j = l, ηk,l ∼ Bernoulli(ηk,l) (17)

if (xi,j = 1) then draw

yi,j |xi,j , μk,l,Λk,l ∼ Normal
(
μk,l,Λ

−1
k,l

)
, (18)

where Λ is a precision matrix, and μ is the mean of the nor-
mal distribution. In this construction, the data distribution is not re-
stricted to a normal distribution. It can take the form of an arbitrary
function f(yi,j |θk,l). Our proposed likelihood is explicitly written
as:

p(yi,j |xi,j , ηk,l, θk,l, Zi = k, Zj = l)

= (ηk,lf(yi,j |θk,l))I(xi,j=1)(1− ηk,l)
I(xi,j=0) (19)

A schematic illustration of the algorithm is shown in Fig. 1.

3.2. Variational inference

We use variational inference instead of Markov Chain Monte Carlo
(MCMC) because of the computational cost associated with the
latter. The Variational Bayesian inference (VB) iteratively opti-
mizes the variational posterior, which is written in a factorized form∏K

k=1 q(θk|γk), instead of the true posterior p(θ|D), where γk is
the variational parameter. Blei and Jordan proposed VB inference
for the Dirichlet process [4], where truncated stick breaking (TSB) is
used, which is a finite approximation of Setthurman’s stick breaking
representation. TSB is used for VB inference for both of FIRM
[7] and IHRM [11]. The optimization is carried out by maximizing
the lower bound of the marginal distribution. Via Jensen’s inequal-

ity, one has p(D) ≥ E
[
log p(D,Θ)

q(Θ)

]
q(Θ)

. To obtain the optimal

variational posterior q∗(θk|γk), one takes the variation of the lower
bound, and sets it to zero.

Fig. 1. Schematic illustration of the proposed algorithm. Upper case
characters A, B, C, D, and E represent items, whereas the lower case
characters a, b, c, d, and e stand for users. For example, (A, a)
with the value 1.5 stands for the fact that user a evaluates item A
with score 1.5. Other numerals and characters have similar mean-
ings. The square shown on the left is the input data, whereas the
square on the right is the output from the algorithm. Items and users
are co-clustered. The proposed model can handle continuous values
with incomplete data, in contrast to the original IRM which does not
handle continuous values directly.

3.3. VB for proposed model

We assume that the variational posterior has the following factorized
form:

q(Θ) = q(ZT1)q(ZT2)q(V T1)q(V T2)q(η)q(μ)q(Λ) (20)

The optimal variational distribution of this model is derived as fol-
lows:

logq(ZT1
i ) = E [logp(D,Z,V, η, μ,Λ)]q(\ZT1) (21)

logq(ZT2
j ) = E [logp(D,Z,V, η, μ,Λ)]q(\ZT2) (22)

q(V T1
k ) = Beta(γT1

1,k, γ
T1
2,k) (23)

q(V T2
l ) = Beta(γT2

1,l , γ
T2
2,l ) (24)

q(ηk,l) = Beta(τ1,k,l, τ2,k,l) (25)

where

γT1
1,k = 1 +mT1

k , γT1
2,k = α1 +

K∑
k′=k+1

mT1
k′ (26)

γT2
1,l = 1 +mT2

l , γT2
2,l = α2 +

L∑
l′=l+1

mT1
l′ (27)

mT1
k =

NT1∑
i=1

q(ZNT1
i ), mT2

l =

NT2∑
j=1

q(ZNT2
j ) (28)

τ1,k,l = b1 +

NT1∑
i=1

NT2∑
j=1

q(ZT1
i )q(ZT2

j )I(x = 1) (29)

τ2,k,l = b2 +

NT1∑
i=1

NT2∑
j=1

q(ZT1
i )q(ZT2

j )I(x = 0). (30)

Here, K is the truncation number of infinite components in T1, and
L is that for T2. E []q(\ZT1) is expectation by q(Θ) except for

q(ZT1). Estimation of q(μk,l),q(Λk,l) is similar to that of varia-
tional inference for the Gaussian mixture model.
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4. EXPERIMENT

4.1. Settings

In the experiments reported below, we used the Movielens dataset,
which contains 100,000 ratings from 943 users for 1682 movies. The
Movielens dataset is 95% sparse. We made disjoint test sets for five-
fold cross validation. For each subset, we ran experiment five times
and calculated the average score. We evaluated the clustering result
in terms of ”Purity” and ”Coverage” and evaluated the prediction
accuracy in terms of the presence or absence via Area Under Curve
(AUC) in ROC curves. Since the original IRM cannot express in-
tegers and continuous values, we must binarize the ratings. Ratings
lower than the means of each user were treated as 0, and the rest
were treated as 1. We followed Zhao’s scheme [11] for this. For the
continuous IRM, all of the ratings were fully used for cluster analy-
sis, and we subtracted each user’s mean from all of the ratings. We
ran VB for the IRM and the proposed model. Except for Normal dis-
tribution of the proposed model, we set hyperparameters to the same
values. Here, α1, α2 = 10, and b1, b2 = 0.1. truncation number K
and L is set to 20.

4.2. Evaluation criteria for clustering

Each movie in the Movielens dataset has one or more genre labels,
so that we modified the standard definitions of Purity and Coverage
as follows.
Purity: We regarded the most-observed genre in a cluster as the
cluster label, then computed purity in each cluster, and took an aver-
age weighted by the cluster sizes.
Coverage: If one movie genre is the most popular genre in a cluster,
we increased the Coverage value by one. When the most popular
genre in many clusters was the same, we only increased the Cover-
age by one. The maximum Coverage was 19 because Movielens has
19 genre labels.
To calculate Purity and Coverage, we need class assignment of each
movie. Using the estimated variational posteriors q(ZT2

j ), we regard
the class index l′ that maximizes q(ZT2

j = l′) as a cluster assign-
ment of movie j.

4.3. Prediction accuracy

Prediction accuracy indicates whether the proposed algorithm cor-
rectly predicts the presence of ratings. Predictive density p(xi,j |D)
is used for the prediction. First, we calculated the prediction accu-
racy using a threshold p(xi,j |D) ≥ 0.5. When p(xi,j |D)was higher
than 0.5, we assumed that user i rates movie j. Second, changing the
threshold from 0 to 1, we drew an ROC curve and calculated AUC. In
an experiment for each cross validation set, 80000 ratings were used
for posterior inference, and 20000 rated ratings and 20000 unrated
ratings were tested by the predictive distribution.

4.4. Recommendation accuracy

Recommendation accuracy indicates whether the proposed algo-
rithm predicts users’ preference for movies. We assumed that user i
prefered movie j if rating(i, j)-userbias(i)≥0. Here rating(i, j)
is the user i’s rating on the movie j, and usermean(i) is the
mean of user i’s ratings. For original IRM, we used predictive
density p(xi,j |D). Due to the sparseness of the datasets, the
problem of choosing thresholds arouse. For the original IRM,
We tested 11 thresholds for the predictive distribution. Those are

0.001, 0.01, 0.1, 0.2, 0.3, . . . , 0.9. For the proposed model, pre-
dictive expectation of yi,j was used. Predictive expectation of yi,j
indicates the prediction for the user i’s rating for the movie j. If pre-
dictive expectation of yi,j was higher than 0, now that we subtracted
user-specific biases from ratings, we assumed user i prefered movie
j. We used 5 fold cross validation set. In a experiment, 80,000
ratings were used to estimate the posterior distribution, and 20,000
ratings were tested.

4.5. Results

The proposed model outperformed the original IRM especially in
terms of AUC of ROC curves and Coverage, as shown in Table 1
and Fig. 2. In the AUC comparison, our proposed model improved
the AUC score of the original IRM from 0.807 to 0.845. Because of
the sparseness of the Movielens dataset, the probability of presence
tends to be small. To obtain better prediction accuracy in real-world
data, we should set the threshold to one suitable for the data density.
Obtained AUC score suggests us to set the threshold to appropriate
one. Fig. 3 shows a graph of the number of movies in the clus-
ters. Observe that the number of movies in the first cluster decreased
from 676 to 444 with the proposed algorithm. The number of movies
in the second cluster also decreased from 202 to 173. In the origi-
nal IRM, the largest cluster contained more than 600 movies, which
amounts to almost 1/3 of all movies. Many of the members in this
cluster should be in different clusters. This phenomenon is caused
by the binarization, which collapses 20% of all the ratings; hence,
those movies that are evaluated only a small number of times tend to
be included in this cluster. In contrast, in the continuous IRM pro-
posed here, such a phenomenon is avoided. Fig. 4 shows a graph of
Recommendation accuracy. For the original IRM, the highest mean
score was 0.600±0.022 (mean%± standard deviation) in the case
that the threshold equals to 0.1. Because of the sparseness of the
datasets, it is difficult to single out an appropriate threshold for the
original IRM whereas the proposed model got higher Recommenda-
tion accuracy 0.613±0.010 in average. Our proposed model enjoyed
the benefits of using predictive expectation for ratings. This was
oweing to the generative model which generates continuous-valued
data.

Table 1. Performance comparison. mean ± standard deviation.
Continuous IRM Original IRM

Prediction accuracy 0.560±0.009 0.523±0.007
AUC 0.845±0.044 0.807±0.015
Coverage 4.600±1.000 3.240±0.523
Purity 0.437±0.004 0.434±0.003

5. DISCUSSION

We extended the original IRM to a model that can handle contin-
uous values and many types of data. In the Movielens dataset, we
compared prediction accuracies and clustering performance between
the original IRM and the proposed method. The proposed model
expresses the presence of data and the continuous value simultane-
ously, and enables us to use not only all the ratings in the learning
sets but also the unbiased continuous ratings. The proposed model
produced improved results especially in ”AUC score” and ”the ef-
ficiency in the recommendation task”. Our model can easily treat
richer data representations, such as relations with multi-dimensional
vectors or tree-structured Bayesian nets, or multinominal document
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ROC curves of the proposed model and original IRM

proposed model
original IRM

Fig. 2. Comparison of ROC curves between the proposed model and
the original IRM for a subset of cross validation sets. Whether a
rating is present or not present is predicted using the predictive dis-
tribution. The ROC is calculated for 20000 rated ratings and another
20000 unrated ratings, by changing the threshold for the prediction.

Fig. 3. Clustering result of movies in Movielens dataset using the
proposed model.

models, if the likelihood function is modified in an appropriate man-
ner. The idea is also applicable to dynamic models, which is one of
our future projects.
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