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ABSTRACT

We address the problem of 2D reconstruction of the gas con-

centration map from its 1D path averages based on Tunable

Diode Laser Absorption Spectroscopy (TDLAS). This prob-

lem is challenging because typically only a very small num-

ber of paths are available. In addition, a path may not be set

up to our desirable configuration. These challenges result in

a large percentage of unobserved pixels in the map that do

not have a single crossing path. We propose a Bayesian ap-

proach for this reconstruction problem by modeling the 2D

map as a Gaussian process. The correlation among pixels is

used to propagate information from observed pixels to unob-

served pixels.

Index Terms— Gaussian process, TDLAS

1. INTRODUCTION

Tunable diode laser absorption spectroscopy (TDLAS) is a

proven technique for measuring gas concentrations (e.g., of

O2, CO) and temperatures simultaneously in combustion sys-

tems such as a boiler [1]. A single TDLAS setup consists of a

laser transmitter (the dark-colored box on the left side of Fig-

ure 1), sending laser beams over a path through the combus-

tion region (the grids or pixels in the middle of Figure 1), to a

laser receiver (the light-colored box on the right side of Fig-

ure 1). Each TDLAS path measures an average value of the

gas concentrations along the path. One active research area in

TDLAS is to reconstruct the 2D gas concentration map based

on multiple path averages. The reconstructed map is useful in

many applications such as combustion monitoring, diagnosis

and optimization.

This reconstruction task is essentially a problem of 2D

reconstruction from 1D projections, which is similar to the

concept of computed tomography (CT) (Chapter 3 in [2]).

However, most widely used CT algorithms such as filtered

back-projection require a lot of projections (multiple views

and dense projections per view) to achieve a good resolution.

In contrast, only a very small number of paths are typically

set up on a boiler; for example, it is not uncommon that we

only have five to ten paths (projections). In addition, a path

may not be arranged at a location or a direction (view) that we
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Fig. 1. Illustration of gas concentration reconstruction

desire because of certain restrictions or mounting difficulties

of a boiler.

Algebraic reconstruction technique (ART) seems to be a

natural fit here because it can handle the issue of a small num-

ber of projections (Chapter 7 in [2]). However, for this ex-

tremely under-constrained problem (the number of unknown

variables, gas concentrations in a 2D map, is far more than the

number of available equations), ART’s solution may not be a

realistic one. Smoothness constraints among neighboring pix-

els are introduced as prior information to help addressing this

under-constrained problem. Smoothness can be incorporated

via smooth basis functions [3, 4, 5] or by bi-cubic spline inter-

polation as a post-processing step [5]. However, such smooth-

ness constraints are local and cannot capture long-range cor-

relation among pixels. Moreover, [3, 4] also apply 1D smooth

basis functions to multiple path averages under the same view.

This requirement is difficult to meet due to the challenges

noted above.

In this paper, we propose a Bayesian approach for gas

concentration reconstruction. The 2D gas concentration is as-

sumed to be a Gaussian process (GP), a special type of mul-

tivariate Gaussian distribution. GP models the global corre-

lation among all pixels in the 2D map vs. the local correla-

tion modeled by prior work [3, 4, 5]. Therefore, information

from path averages can be propagated to all pixels instead of

just local pixels. This allows us to reconstruct the whole map

with as few as one path and with arbitrary path configurations.

The rest of this paper is organized as follows. In Section 2,

we formally define this reconstruction problem. In Section 3,

the proposed algorithm is described. We present simulation

results in Section 4 and conclude this paper in Section 5.
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2. PROBLEM DEFINITION

Our goal is to reconstruct an M × N gas concentration

map v from I path averages (projections), denoted by an

I-dimensional vector b. In the example shown in Figure 1,

we have M = N = 8 and we want to estimate the gas con-

centration at each of the 64 grid pixels. Note that M doesn’t

need to be equal to N . Typically, we represent the map v as a

J-dimensional vector for easy algebraic manipulation, where

J = M × N . There are two ways to denote a pixel. One is

to use its coordinates (x, y) in the 2D map; the other is to use

its corresponding index j in v.

Figure 1 shows one of the I paths. The i-th projection bi

represents the average gas concentration along the i-th path,

where i = 1, 2, ..., I . The projections b and map v have the

following relation

b = Av. (1)

A is an I × J projection matrix. Once the paths are config-

ured, A becomes a constant matrix. The sum of the i-th row

and the sum of the j-th column of A are respectively defined

by

Ai,+ =
J∑

j=1

Ai,j and A+,j =
I∑

i=1

Ai,j . (2)

We now describe how to determine a projection weight

Ai,j in the projection matrix A. The basic idea is that the

contribution of a pixel to the projection is proportional to the

length of intersection between the path and the pixel area. In

Figure 1, the path intersects with both pixel (1, 5) and (4, 5).
However, because the intersection length of pixel (1, 5) is

longer than that of pixel (4, 5). Therefore, pixel (1, 5) has

a larger weight than pixel (4, 5). In this example, only 9 out

of 64 pixels have non-zero weights in the corresponding row

of A. We normalize every row to make the projection a path

average such that

Ai,+ = 1. (3)

A j-th pixel is termed as observed if there is at least one path

crossing it or A+,j > 0. Otherwise, it is unobserved.

Our reconstruction problem now becomes solving a linear

equation (1) with both A and b known. If A is an invertible

square matrix, where I = J , then we have v = A−1b. If

I > J and A has full rank, based on linear least square we

have v = (AT A)−1AT b. However, our problem is very

under-constrained because of I � J . In such a case, we have

multiple solutions satisfying the same equation (1).

Simultaneous algebraic reconstruction technique (SART)

is one of the most widely used ART algorithms [2]. It has the

following iterative procedure

v
(k+1)
j = v

(k)
j +

λ

A+,j

I∑
i=1

Ai,j
bi − (Av(k))i

Ai,+
. (4)

v
(k)
j denotes the current reconstructed map after the k-th iter-

ation. (Av(k))i indicates the estimated i-th projection from

the current map. Note that in our problem Ai,+ = 1 and can

be omitted from (4), but in general it has a non-zero value.

(4) can be understood as follows. The residual between the

true projection bi and the estimated projection (Av(k))i in-

dicates in which direction v
(k+1)
j should move from v

(k)
j to

reduce this residual. The final direction is determined by the

weighted average of all I projections, each with a weight of

Ai,j normalized by A+,j . The magnitude of this movement is

adjusted by a parameter λ.

The SART algorithm is proven to converge to a solution of

(1) if A+,j �= 0 [6]. However, there is no guarantee whether

the found solution, out of all possible solutions, is realistic or

not. In addition, in our application, the path configuration can

be arbitrary. It often happens that A+,j = 0 for some columns

so the j-th pixel is unobserved. In such cases, division-by-

zero problem will happen and (4) will stop working. We will

compare our algorithm with SART in our tests.

3. ALGORITHM DESCRIPTION

We model v as a multivariate Gaussian distribution

P (v) = N (v|m,C), (5)

where m and C are the J-dimensional mean vector and J×J
covariance matrix, respectively. Because v represents a 2D

map, its distribution is also referred to as a Gaussian process

(GP). We assume that this GP is homogeneous since we don’t

have a priori knowledge about the differences between differ-

ent pixels.

The cross-covariance Cj1,j2 between vj1 and vj2 in v,

where 1 ≤ j1, j2 ≤ J , is defined as

Cj1,j2 = f exp(− (xj1 − xj2)
2 + (yj1 − yj2)

2

r2
). (6)

(xj1 , yj1) and (xj2 , yj2) are the coordinates for pixels j1 and

j2, respectively. f and r are two parameters. (6) indicates

that if pixels j1 and j2 are close to each other, their distance

is small and thus the corresponding vj1 and vj2 will have high

correlation. On the other hand, far-apart vj1 and vj2 will be

less correlated. If j1 = j2, Cj1,j2 = f which is the variance

of vj1 . Similar GP models have been successfully applied in

image processing. For example, under this assumption, the

original high-resolution image can be recovered from one or

more low-resolution images even if a lot of information is

missing [7].

To make the projection process probabilistic, we intro-

duce a projection noise model as an extension from (1)

b = Av + e, (7)

where e is the projection noise vector and has a Gaussian dis-

tribution P (e) = N (e|0, σ2I). σ2 is the noise variance and

I is a I × I identity matrix. The projections b can thus be
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modeled as another multivariate Gaussian distribution given

the 2D map v

P (b|v) = N (b|Am, σ2I). (8)

We can now write the joint probability P (v,b) = P (v)P (b|v)

P (v,b) = N (
[
v
b

]
|
[

m
Am

]
,

[
C CAT

AC ACAT + σ2I

]
). (9)

Our task is to infer map v from projections b, or computing

the conditional probability of P (v|b), which is another mul-

tivariate Gaussian distribution and can be easily derived from

(9). Finally the mean of P (v|b) is output as the reconstructed

2D map

ṽ = CAT (ACAT + σ2I)−1(b − Am) + m. (10)

Parameter settings. We fix f = 1 and σ2 = 0.001 such

that the variance ratio between signal and noise is a large

enough f/σ2 = 1000. This ensures that we can faithfully

reconstruct the map without much distortion due to noise. At

the same time, σ2 = 0.001 is also large enough to avoid a

singular matrix before the matrix inverse in (10). One may

ask what if the actual signal variance is much larger than 1.

In that case, we can multiply both f = 1 and σ2 by the same

factor. This will not change the result of (10). Once we col-

lect enough path projections, we calculate the average b from

all of them. We then set every element mj = b in the mean

vector m, where j = 1, 2, ..., J , due to our homogeneous as-

sumption of the GP model. In practice, we find that when the

performance of our algorithm doesn’t vary appreciably when

r is between 0.5 and 1.5. Therefore, we fix r = 1.0. Alterna-

tively, we can learn all above parameters by cross validation.

However, this is not done in this work.

Complexity. We can rewrite (10) as a simpler linear form

of ṽ = Gb + u. Both G and u are computed once off-line

and then become constant during on-line testing. Even so,

calculation of G and u can be a problem. First, the covariance

matrix C has a size of J × J . Recall that J = M × N . Let’s

assume that M = N from now on and J � I . Calculation

and storage of C take a complexity of O(N4) if we want

to compute each element of C only once. Second, after we

have C, computing G and u has a complexity of O(J2I) or

O(N4I). For a medium-size map where M = N = 200, this

can pose a serious computational burden.

We adopt the following strategies to mitigate these issues.

First, note that each element Cj1,j2 in C is a function of |xj1−
xj2 | and |yj1 − yj2 | as in (6). There are only N different

values for all possible |xj1 − xj2 | or |yj1 − yj2 |. Therefore,

instead of indexing each element in C using j1 and j2, we

index them using |xj1 − xj2 | and |yj1 − yj2 |. We thus bring

down the handling cost for C from O(N4) to O(N2). Also

note that the projection matrix A is a sparse matrix: each

row has only O(N) non-zero entries. Using this fact, we can

bring down the computational complexity for G and u from

O(N4I) to O(N3I). Testing is fast because the complexity

is just O(N2I) once G and u are known.

4. SIMULATION RESULTS

In order to evaluate our algorithms, we need to compare the

reconstructed map with the ground-truth map. However, it is

difficult to directly measure the gas concentration inside the

combustion region. Thus, we resort to simulated tests. In all

our tests, the size of a map is M = N = 200. The coordinates

of the map is set to be between 0 and 1. In other words, all

pixel coordinates satisfy 0 ≤ xj , yj ≤ 1 and each pixel has a

dimension of 0.005 × 0.005.

A ground-truth map is generated by summing L 2D

smooth functions (similar to the covariance function in (6)).

In particular, the j-th pixel value vj is produced as follows

vj =
L∑

l=1

hl exp(− (xj − μxl)2 + (yj − μyl)2

s2
l

). (11)

(xj , yj) is the corresponding 2D coordinates of vj . The l-th

smooth function is defined by hl exp(− (x−μxl)
2+(y−μyl)

2

s2
l

),
where l = 1, 2, ..., L. There are four parameters for each

function, hl, sl, μxl and μyl, representing the peak, width and

center locations of the function, respectively.

We fix L = 10 for all our tests. To produce a 2D map,

we randomly create each of the L = 10 smooth functions by

randomly selecting hl between 0 and 1, sl between 0.1 and

0.4, μxl and μyl between 0 and 1, respectively. Then all the

L functions are summed to form the final ground-truth map v
as in (11). The map created in this way is smooth, and usually

multi-peaked and with an irregular shape, which resembles a

realistic gas concentration map. We create a total of ten maps

using this approach. One example is shown in Figure 2 (e and

j).

Although our algorithm can handle any path setup and the

locations of the transmitter and the receiver can be anywhere

in the map, we configure the paths in a more realistic way. A

path is defined by two end points (xe1, ye1) and (xe2, ye2).
We require that the end points must be on the boundary of

the map because transmitter and receiver cannot be mounted

inside the boiler. In addition, a path must either go from left

to right or from bottom to top (Figure 1). This makes better

use of a path than, for example making a path from left to

bottom. However, the actual location of an end point on a

side is random.

There are two steps to create a path. First, we randomly

select which direction the path will go, from left-to-right or

from bottom-to-top. Second, we randomly select the two end

point locations between 0 and 1 on a selected side. We gradu-

ally increase the number of paths I from 1 until 500 for each

map.

We run both our algorithm and SART [2] for each path

configuration and for each of the ten test maps. We then com-

pare the reconstructed map ṽ with the ground-truth map v us-

ing mean squared error MSE =
√∑ J

j=1(ṽj−vj)2

J . The MSE
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(a) SART I = 10 (b) SART I = 50 (c) SART I = 100 (d) SART I = 500 (e) Ground truth

(f) Ours I = 10 (g) Ours I = 50 (h) Ours I = 100 (i) Ours I = 500 (j) Ground truth

Fig. 2. Comparing the reconstructed results with the ground truth with different number of paths
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Fig. 3. MSE scores for SART and the proposed Bayesian

algorithm when the number of paths varies from 5 to 500

scores are averaged from these ten results. Figure 3 shows

the comparison results between our Bayesian algorithm and

SART for number of paths I = 5, 10, 20, 50, 70, 100, 200,

500. One standard-deviation error bar is also shown. For

SART, the parameter λ in (4) is set to 1.0, which produces

the lowest overall MSE errors.

Our Bayesian algorithm outperforms SART by producing

lower MSE errors for all path settings. Due to the division-

by-zero error, SART is unable to produce reconstructed map

when I is very small at 5 and 10. In contrast, our algorithm

can produce results for all I ≥ 1. Note that when I = 0, our

algorithm just outputs m, the mean of the Gaussian process

(GP) because no extra information is available. Figure 2 also

compares the reconstructed maps from both SART and our al-

gorithm for one of the ten test cases. Our Bayesian algorithm

is able to reconstruct the rough structure of the map when

I = 10 (Figure 2 (f)). When I = 50, the reconstructed results

already show a lot of details (Figure 2 (g)). However, SART

can only produce reasonably good results when I = 100 (Fig-

ure 2 (c)). At I = 500, both algorithms produce results close

to the ground truth. At such a large I , we have adequate in-

formation for reconstruction and thus it will be less useful to

use our GP model.

5. SUMMARY

We present a Bayesian approach to tackle the problem of 2D

reconstruction of the gas concentration map from its 1D path

averages. The prior probability of the 2D map is modeled as a

Gaussian process (GP). Using GP, the correlation among pix-

els is used to propagate information from observed pixels to

unobserved pixels. Our approach is demonstrated to outper-

form previous algebraic reconstruction technique in our sim-

ulated tests.
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