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ABSTRACT
We address the problems of multi-domain and single-domain regres-
sion based on distinct labeled training sets for each of the domains
and a large unlabeled training set from all domains. We formulate
these problems as ones of Bayesian estimation with partial knowl-
edge of statistical relations. We propose a worst-case design strategy
and study the resulting estimators. Our analysis explicitly accounts
for the cardinality of the labeled sets and includes the special cases
in which one of the labeled sets is very large or, in the other extreme,
completely missing. We demonstrate our estimators in the context
of audio-visual word recognition and provide comparisons to sev-
eral recently proposed multi-modal learning algorithms.

Index Terms— Bayesian estimation, multi-modal learning.

1. INTRODUCTION

In many application areas one can access data from multiple domains
to perform a task. For example, word recognition can greatly benefit
from the availability of joint audio-visual measurements [1]. Identity
recognition and verification can be performed much more accurately
by fusing information from several modalities such as facial images,
iris scans, voice recordings, handwritings, and more.

A difficulty in fusing multiple sources, though, is that one can
often access only distinct labeled training sets for the different do-
mains and does not have paired labeled examples from all domains.
Consider, for instance, audio-visual gender recognition. There are
numerous existing data-sets of labeled voice recordings as well as
labeled data-sets of facial images. However, there are only a few
audio-visual data-sets (where the audio and video are paired and la-
beled), with limited number of subjects each. Thus, it is easy to train
a classifier based only on audio or only on image data, but it is not
clear how the two modalities should be best fused.

While paired multi-domain labeled examples are typically
scarce, paired unlabeled examples are often abundant. For instance,
enormous amounts of speaker video sequences (together with audio)
can be easily collected. These videos, though, often do not come
with labels. However, they can be used to unveil the statistical re-
lations between audio and video. An important question is how to
best fuse audio- and image-based predictors, given these relations.

An even more interesting and practical question is whether the
availability of multiple data sources can aid a machine learning algo-
rithm during training, when not all are available during testing. For
example, suppose we want to predict the age of a speaker. Assume
we have a labeled audio training set, a labeled image training set, and
a large amount of unlabeled audio-visual examples. Can the visual
examples help construct a predictor, which is solely based on audio?

In this paper we address the problems of multi-domain and
single-domain regression based on distinct labeled single-domain
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training sets and unlabeled multi-domain data. Specifically, focusing
on two domains for simplicity, we consider the situation in which
available to us is a very large unlabeled training set {xi1,xi2} and
two (mutually unpaired) labeled sets {xi1,yi} and {xi2,yi}. Using
this training data, we treat the problems of designing a predictor of
y based on (x1,x2) (multi-domain regression) and a predictor of y
based on x1 alone (single-domain regression). Our analysis explic-
itly accounts for the cardinality of the labeled sets. In particular, it
includes the case in which one or both labeled sets are very large as
well as the case in which one labeled set is completely missing.

A problem related to ours is multi-view learning [2] in general
and multi-view regression [3] in particular. These techniques make
use of a large training set of data from multiple domains (views),
containing only a few labeled examples. If the views tend to agree,
then the unlabeled examples are useful [2, 3]. In our setting, how-
ever, we do not observe even a single multi-domain labeled example
{xi1,xi2,yi} and also make no assumptions on the underlying dis-
tribution. Situations in which labeled samples from a source domain
are used to construct a predictor for a target domain fall under the
category of transfer learning [4]. Nevertheless, in these settings,
paired unlabeled examples from the two domains are not accessible.

More related to our setting are the cross-modality and shared-
representation learning scenarios recently studied in [1] in the con-
text of multi-modal learning. In both settings, unlabeled training
data {xi1,xi2} from multiple modalities, such as audio and video, are
used to perform a feature learning stage. In cross-modality learning,
then, one constructs a predictor based on x1 using a labeled training
set {xi1,y}. For example, we may want to build a classifier operat-
ing on audio features by observing labeled audio examples in addi-
tion to unlabeled audio-visual instances. In shared-representation
learning, one constructs a predictor based on x1 using a labeled
training set {xi2,y}. For instance, we may want to train an audio
classifier by observing labeled visual examples in addition to unla-
beled audio-visual instances. Shared-representation regression was
studied from a Bayesian estimation perspective in [5], in which a link
to instrumental variable regression was also discussed. Both cross-
modality and shared-representation regression are special cases of
the general setting we address here, corresponding to the situation in
which there are zero examples in one of the labeled sets.

Finally, in statistics, regression involving two types of covariates
is often performed via partially linear models. These methods can be
applied in multi-domain settings in which both the unlabeled set and
one of the labeled sets are very large whereas the other labeled set is
small. Such situations fall within our problem formulation as well.

Due to space limitations, we state here the main results without
proofs, which will appear in [6].

2. PROBLEM FORMULATION

We assume we are given access to three data-sets as follows:

1. labeled examples {(x�1,y�)}L1
�=1 from domain 1;

2145978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



2. labeled examples {(x�2,y�)}L1+L2
�=L1+1 from domain 2;

3. paired unlabeled examples {(xu1 ,xu2 )}L1+L2+U
u=L1+L2+1.

These training sets correspond to independent draws from the distri-
butions FX1Y , FX2Y , and FX1X2 , respectively. Our focus is on sit-
uations in which the number U of unlabeled examples is very large,
so that the joint distribution FX1X2 can be assumed known (or very
well approximated). The cardinalities L1 and L2 of the labeled sets
are arbitrary. In particular, one of them can be zero. In this case no
knowledge whatsoever is available regarding the statistical relation
between Y and the associated domain. On the other extreme, one (or
both) of the labeled sets may be very large, in which case the associ-
ated single-domain MMSE estimator, say E[Y |X1], can be assumed
known.

In terms of testing, we address two tasks. The first is multi-
domain regression, in which the algorithm is asked to predict the
value y based on an observation of x1 and x2. The second is single-
domain regression, where prediction should be based solely on x1.

We adopt and generalize the frameworks of [5, 7] by posing our
problem as one of estimation with partial knowledge of statistical
relations. Before formalizing our problem in estimation theoretic
terms, we first recall the common practice for regression from one
domain with a limited number of examples.

2.1. Single-Domain Regression with Single-Domain Training

Suppose we are given a sample {x�,y�}L�=1, independently drawn
from the joint distribution of the random variables (RVs) X and Y ,
which take values in R

M and R
N , respectively. If L is very large,

then nonparametric methods can be used to approximate the condi-
tional expectation curve ϕ(x) = E[Y |X = x] with great accuracy
at any x. Such estimates, however, are often far from accurate when
L is small. Common practice in such situations is to use paramet-
ric or semi-parametric methods that impose some structure on the
sought predictor. In other words, rather than trying to approximate
the regression function ϕ(x) = E[Y |X = x], which minimizes
the MSE among all functions of X , we settle for approximating the
optimal predictor among some family A of functions:

ϕ∗ = arg min
ϕ∈A

E
[‖Y − ϕ(X)‖2] . (1)

The less rich the class A is, the more accurate we can typically ap-
proximate ϕ∗(X) from the training data. This comes at the cost that
the (theoretical) MSE that ϕ∗(X) achieves is higher. In the sequel,
we term ϕ∗ of (1) the A-optimal estimator of Y from X .

One of the simplest structural restrictions corresponds to linear
estimation, so that A is the set of all linear functions from R

M to
R
N . In this case,

ϕ∗(X) = ΓYXΓ†
XXX. (2)

The second-order moments ΓYX = E[Y XT ] and ΓXX = E[XXT ]
can be estimated from the training set, for example, by using sample
moments. A more general model corresponds to the collection A of
all functions of the form ϕ(X) =

∑K
k=1 akϕk(X), where {ϕk}Kk=1

is a predefined set of functions from R
M to R

N . The optimal co-
efficients a = (a1, · · · , aK)T can be obtained similar to the linear
setting.

In both examples, A forms a linear subspace of functions, as
for every ϕ1, ϕ2 ∈ A and α, β ∈ R, the function αϕ1 + βϕ2 also
belongs to A. We note that this claim is also trivially true when A is
taken to be the set of all (Borel-measurable) functions, in which case
ϕ∗(X) = E[Y |X], and when A contains only the zero function, in
which case ϕ∗(X) = 0.

Y

X1 X2

ψB(X2)

FX1X2

ϕA(X1)

E[‖Y ‖2]

Fig. 1: Known statistical relationships.

2.2. Statistical Relations Deduced from Separate Training Sets

In our setting we have access to two sperate sets of labeled examples,
one for each domain. We can therefore determine the A-optimal
predictor of Y givenX1 as well as the B-optimal predictor of Y from
X2, were A and B are classes of functions chosen in accordance
with the cardinality of the the two sets. We model the existence of
numerous unlabeled examples (X1, X2) by the assumption that the
joint distribution of X1 and X2 is known. We also assume that the
second-order moment of Y is known (or accurately estimated from
the labeled sets). The statistical relationships assumed known are
depicted in Fig. 1.

In a more mathematical language, assume we are given two
functions ϕ∗ : R

M1 → R
N and ψ∗ : R

M2 → R
N , a cumula-

tive probability function FX1X2 = P(X1 ≤ x1, X2 ≤ x2) over
R
M1×M2 , and a scalar c > 0. Then what we know regarding the

RVs X1, X2 and Y is that their distribution FX1X2Y belongs to the
set F of distributions satisfying

ϕ∗=arg min
ϕ∈A

E[‖Y − ϕ(X1)‖2], ψ∗=argmin
ψ∈B

E[‖Y − ψ(X2)‖2],

FX1X2Y (x1,x2,∞) = FX1X2(x1,x2), E[‖Y ‖2] = c, (3)

where A and B are linear subspaces of functions.
Any predictor of Y , whether a function of X1 and X2 or of X1

alone, may perform well under certain distributions FX1X2Y ∈ F
and worse under others. Our goal is therefore to uniformly optimize
the performance over F .

3. MULTI-DOMAIN REGRESSION

For any distributionFX1X2Y , the MSE attained by an estimator Ŷ =
ρ(X1, X2) is defined as

MSE(FX1X2Y , ρ) = E
[‖Y − ρ(X1, X2)‖2

]
, (4)

where the expectation is with respect to FX1X2Y . Since the MSE
depends on FX1X2Y , which is unknown, our approach is to seek the
estimator whose worst-case MSE over FX1X2Y ∈ F is minimal.
Namely, we are interested in

ρ∗ = argmin
ρ

sup
FX1X2Y ∈F

MSE(FX1X2Y , ρ). (5)

The next theorem provides a means for solving this problem.

Theorem 1 Choose any FX1X2Y ∈ F and consider the estimator

ρ∗C = argmin
ρ∈C

MSE(FX1X2Y , ρ), (6)

where C = {ρ : ρ(x1,x2) = φ(x1) + ψ(x2), φ ∈ A, ψ ∈ B}.
Then

1. the function ρ∗C does not depend on FX1X2Y ∈ F ;
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2. MSE(FX1X2Y , ρ
∗
C) does not depend on FX1X2Y ∈ F ;

3. the estimator ρ∗C of (6) is also the solution ρ∗ to (5).

Theorem 1 shows that instead of tempting to solve the minimax
problem (6), we can equivalently solve the minimization problem
(5). Namely, all we need to do is determine the MMSE estimator of
Y among all functions of the form φ(X1)+ψ(X2) with φ ∈ A and
ψ ∈ B. As we now show, in many practical cases the latter possesses
a closed form solution.

3.1. Single-Domain Training

Suppose that we have at our disposal only labeled examples from one
domain, sayX1. In this case B = {0} so that C = A. Consequently,
the solution to (6) is simply

ρ∗(X1, X2) = ϕ∗(X1). (7)

This shows that, at least from a worst-case perspective, there is no
gain in basing the prediction on the domain X2 for which we have
no labeled training examples. Namely, for any estimator that dif-
fers from ϕ∗(X1), and, in particular, a function of X2, there exist
distributions FX1X2Y ∈ F (one maybe being the true underlying
distribution) under which ϕ∗(X1) performs better.

This result does not stand in contrast to the basic observation in
multi-view learning that unlabeled data helps [2]. This is because in
our setting, we do not assume that the two views are “coherent” or
tend to agree in any sense, as done e.g., in [3].

3.2. Multi-Domain Linear Regression

Suppose that the labeled training sets we have suffice to identify
(with very high precision) the optimal linear estimator from each
view. In this case A and B correspond to the collection of all lin-
ear functions from R

M1 to R
N and from R

M2 to R
N , respectively.

Consequently, C is the set of all linear functions from R
M1 × R

M2

to R
N . This implies that the solution to (6) is simply the best linear

predictor of Y based on X1 and X2, namely

ρ∗(X1, X2) =
(
ΓYX1 ΓY X2

)(ΓX1X1 ΓX1X2

ΓX2X1 ΓX2X2

)† (
X1

X2

)
.

(8)
The second-order moments ΓXiXj , i, j ∈ {1, 2}, can be accurately
estimated from the unlabeled training set. Similarly, the matrices
ΓYXj , i, j ∈ {1, 2}, can be determined from the labeled sets.

This analysis trivially extends to the case in which the training
sets suffice to identify the optimal parametric estimators of the forms
ϕ(X1) =

∑K1
k=1 a

1
kϕk(Y ) and ψ(X2) =

∑K2
k=1 a

2
kψk(X2), where

{ϕk}K1
k=1 and {ψk}K2

k=1 are given functions.

3.3. Multi-Domain Partially Linear Regression

Suppose that we have numerous labeled examples from the first do-
main, allowing us to determine E[Y |X1], and only a limited amount
of labeled examples from the second domain, so that we can only
determine the best linear predictor of Y from X2. In this setting,
Theorem 1 implies that the minimax-optimal predictor based on X1

and X2 is the estimator minimizing the MSE among all functions of
the form

ρ(X1, X2) = a(X1) +BX2, (9)

where a : RM1 → R
N and B ∈ R

N×M2 . In [7] it was shown that
the solution to this problem is given by

ρ(X1, X2) = E[Y |X1] + ΓYWΓ†
WWW, (10)

where W = X2 − E[X2|X1].
The intuition here is that we need to make sure we do not ac-

count for variations in Y twice when fusing information from X1

and X2. Thus, we start with the estimate ϕ∗(X1) = E[Y |X1], and
then update it with the optimal linear estimate of Y based on the
innovation X2 − ϕ∗(X1) of X2 with respect to ϕ∗(X1).

In practice, E[Y |X1] and E[X2|X1] can be approximated from
the labeled and unlabeled training sets, respectively, using nonpara-
metric methods. The second term in (10) can then be obtained by
linearly regressing Y against X2 − E[X2|X1].

4. SINGLE-DOMAIN REGRESSION

Next, we address the setting in which at the testing stage our predic-
tor is only supplied with one type of features, say X1. The interest-
ing question in this context is how to take into account the training
sets of both domains in order to design an improved estimator of Y
based on X1 alone.

Since our estimator operates on X1 and is judged by the prox-
imity of its output to Y , its performance is only affected by the joint
distribution of Y andX1. It may thus seem at first that the second set
of features X2 cannot be of help in improving estimation accuracy.
However, note that FX1Y is not fully known in our setting. Thus,
being told the statistical relations between Y and X2 and between
X1 and X2, helps us narrow down the set of candidate distributions
FX1Y for which we need to design an estimator.

In the single-domain setting we know that, whatever we do, our
estimator will not achieve lower MSE than the conditional expecta-
tion E[Y |X1]. We are thus interested in minimizing the regret of
our estimator ξ(X1), which is defined as the difference between the
MSE it achieves and the MSE of the MMSE solution:

R(FX1X2Y , ξ) = E
[‖Y − ξ(X1)‖2

]− E
[‖Y − E[Y |X1]‖2

]
.

(11)

Similar to the MSE, the regret depends on FX1X2Y , which is
unknown. We would therefore like to design an estimator whose
worst-case regret over FX1X2Y ∈ F is minimal, namely

ξ∗ = argmin
ξ

sup
FX1X2Y ∈F

R(FX1X2Y , ξ), (12)

where now ξ(X1) is only a function of X1.

The next theorem describes the single-domain minimax regret
estimator in terms of the multi-domain minimax MSE solution.

Theorem 2 The solution to problem (12) is given by

ξ∗(X1) = E[ρ∗(X1, X2)|X1] (13)

where ρ∗(X1, X2) is the multi-domain minimax estimator (5).

This result has a very simple and intuitive explanation. We know
that FX1X2Y belongs to the set F , and therefore ρ∗(X1, X2) is the
optimal estimate of Y in a minimax-MSE sense. However, we can-
not use this estimate as it is a function of X2, which is not mea-
sured in our setting. What Theorem 2 shows is that the optimal strat-
egy is to estimate ρ∗(X1, X2) based on the available measurements,
which are X1 alone. Computation of the conditional expectation
E[ρ∗(X1, X2)|X1] only requires knowledge of the marginal distri-
bution FX1X2 , which is available in our setting from the unlabeled
data.

We now apply this result to several interesting scenarios.
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4.1. Cross-Modality Regression

In the cross-modality learning setting, introduced in [1], we only
have labeled examples of the domain X1 and not of X2. The in-
tuition, as presented in [1], is that the unlabeled data should some-
how help boost the performance of the best single-domain estimator
ϕ∗(X1) that can be designed based on the available labeled set.

This scenario can be treated within our framework by setting
ψ∗(X2) = 0. As we have seen in Section 3.1, in this situation
ρ∗(X1, X2) = ϕ∗(X1). Therefore, the single-domain minimax-
regret predictor of Y from X1 is given by

ξ(X1) = E[ϕ∗(X1)|X1] = ϕ∗(X1). (14)

We see that despite the fact that we know FX1X2 , there is no better
strategy than using the estimator ϕ∗(X1) here. This implies that
cross-modality learning is not useful unless additional knowledge
on the underlying distributions is available.

The application of cross-modality learning to classifying iso-
lated words from either audio or video (lipreading) was studied in
[1]. It was reported that unlabeled audio-visual examples helped im-
prove visual recognition but failed to boost the performance of an
audio classifier. This aligns with our analysis, which states that, in
the worst-case scenario, there is nothing better to do than disregard-
ing the modality for which no labeled examples are available.

4.2. Shared-Representation Regression

Consider next the shared-representation learning setting [1] in which
we have no labeled examples from the domain X1 but rather
only from X2. As we have seen in Section 3.1, in this setting
ρ∗(X1, X2) = ψ∗(X2). Therefore, the single-domain minimax-
regret predictor of Y from X1 is given in this case by

ξ(X1) = E[ψ∗(X2)|X1]. (15)

This expression can be approximated using nonparametric methods
by using the unlabeled training examples. This result indicates that
when performing prediction based on a modality for which we do
not have labels, having such labels for the other modality can help.

5. AUDIO-VISUAL WORD RECOGNITION

We now illustrate the approach derived from our theoretical study in
the tasks of spoken digit classification from audio-only and video-
only measurements. We used the Grid Corpus [8], which consists
of speakers saying simple-structured sentences. Every sentence con-
tains one digit, which we isolated using the supplied transcriptions.
We constructed three distinct training sets, one of labeled audio ex-
amples (4 males, 4 females), one of visual examples (4 males, 4
females) and one of unlabeled audio-visual examples (6 males, 4
females). Six speakers were used for testing (3 males, 3 females).

We used face detection followed by mean-shift on the gradient
image map to extract the lip region. Segments of duration 320msec
were used for recognition. This corresponded to 8 consecutive video
frames and 1600 audio samples. The image frames were reduced
to 10 dimensions using PCA, resulting in an 80-dimensional video
feature-vector. The dimension of the spectogram of the audio was
reduced to 180, to constitute the audio features. In all experiments
Y was a 10-dimensional vector with 1 at the location corresponding
to the spoken digit and 0 elsewhere.

Our approach is designed for regression, so that the predicted

Ŷ is a continuous variable. To perform classification, we chose the

Features Accuracy

Training Testing
Minimax Deep RBM

(Grid corpus) (CUAVE)

Audio Audio 69.3% 95.8%

Video Video 52.0% 69.7%

Video Audio 50.1% 27.5%

Audio Video 44.6% 29.4%

Table 1: Digit classification performance.

maximal element in Ŷ . For simplicity, A and B were taken as the
sets of all linear functions (linear regression). This choice yields
rather poor classification results based solely on audio or solely on
video. Our goal, though, is to demonstrate that, even with such naive
single-domain predictors, we can attain good recognition accuracy
by using our approach, which cleverly fuses the two domains.

Table 1 compares the accuracy of the proposed approach with
that attained by the deep restricted Boltzmann machine (RBM) [1]
on the CUAVE dataset [9]. The Grid corpus, used here, is more
challenging in that the digits appear within sentences, rather than
individually. As can be seen, the single-domain predictors we start
with perform relatively poorly (rows 1 and 2). Nevertheless, in the
shared-representation settings (rows 3 and 4), our predictors perform
much better than the RBM method. Their accuracy is only between
7% and 20% worse than the corresponding single domain estimators
(rows 1 and 2, respectively). By contrast, the difference in success
rates for the RBM predictor is between 30% and 70%.
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