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ABSTRACT 

In order to increase the efficiency of the Photovoltaic (PV) 
system, the PV system should be operated at the Maximum 
Power Point (MPP). The MPP Tracking (MPPT) is an es-
sential part in achieving this improvement. Some of the ex-
isting techniques such as Perturb-and-Observe (P&O) and 
Incremental Conductance (INC) are relatively simpler to 
implement, but under rapidly changing irradiance and tem-
perature conditions, they fail to track the MPP. Although 
methods such as Multilayer Perceptron (MLP) and Fuzzy 
Logic (FL) are efficient in tracking the MPP, their imple-
mentation increases the system complexity. In this paper, we 
propose a novel artificial intelligence based controller for 
MPPT, which can efficiently track the MPP, while keeping 
the computational complexity within the limits. Our tech-
nique uses Functional Link Artificial Neural Network 
(FLANN) to predict the PV output voltage at the MPP. 
Since there is no hidden layer, FLANN is computationally 
inexpensive. Simulation results verify that the proposed 
FLANN controller is computationally less intensive and 
exhibits higher efficiency under rapidly changing weather 
conditions. 

Index Terms— MPPT, FLANN, PV system, rapidly 
changing weather condition, computational complexity 

1. INTRODUCTION 

Due to constantly growing environmental concerns, non-
conventional energy sources are attracting more and more 
global attention. Solar energy systems are of particular in-
terest due to their lower maintenance, abundance of energy 
source, and advancements in semiconductor and power elec-
tronic devices. Solar energy systems directly convert solar 
radiation into electricity by photovoltaic effect. Assemblies 
of solar cells make solar modules, and several modules in 
series or parallel make photovoltaic (PV) array. Due to the 
nonlinearity between PV output voltage and current, there is 
a unique MPP in the power-voltage characteristics under 
uniform weather conditions. In order to maximize the effi-
ciency of photovoltaic systems, their operating point should 
be at MPP. Therefore, an MPP tracker needs to be set up 
between the PV array and the load. Fig. 1 schematically

shows a common standalone PV system. The MPPT section 
includes an MPPT controller, control unit, and a Boost DC-
DC converter. The MPPT controller outputs the reference 
voltage for the PV array using different MPPT algorithms. 
By tuning the duty cycle of the PWM used by the semicon-
ductor switch (IGBT) in the DC-DC converter, PV terminal 
voltage is adjusted, so that the PV system works at the MPP. 

Fig. 1. Schematic diagram of the PV system.

Over the past few years, researchers have proposed sev-
eral MPPT algorithms, such as Perturb-and-Observe (P&O) 
[1], Constant Voltage Tracking (CVT) [2], Incremental 
Conductance (INC) [3], Artificial Neural Network (ANN)  
[4], Fuzzy Logic (FL) [5], and other modified algorithms 
based on these methods. Among these, P&O and INC are 
very popular in commercial electrical products and are effi-
cient under uniform weather conditions, but they fail to fol-
low the MPP under rapidly changing weather conditions. 
For example, the principle of P&O is to periodically perturb 
(increase or decrease) PV array terminal voltage and com-
pare instant power P(k) with previous power P(k-1) to 
change power output of PV array. When a perturbation 
gives rise to an increase in the PV array power, the direction 
of the perturbation is maintained, otherwise it is reversed 
[6]. In Fig. 2, the PV system starts from point A and the 
operating point moves from A to C due to the voltage per-
turbation, δ V, under approximately constant atmospheric 
condition. When the environmental conditions vary rapidly, 
the power curve changes from P1 to P2. According to the 
principle of P&O algorithm, if the power increase (δ Pi) 
made by the raise of irradiance is larger than the power in-
crease (δ Pv) made by the voltage perturbation, the next 
voltage perturbation will continue to increase. However, this 
direction negates the condition to reach the MPP (point D).  

Compared to P&O and INC algorithms, artificial intel-
ligence based methods such as ANN and FL are more effi-
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cient and flexible because they can predict the MPP under 
rapidly changing weather conditions. Whereas, the disad-
vantages of ANN and FL are that they add complexity to the 
system implementation and take longer time for network 
training. 

In this paper, we use a novel FLANN-based controller 
to predict the optimal reference voltage for PV array under 
rapidly changing environment conditions. FLANN features 
fast convergence speed, simplicity, and good accuracy [9]. 
In our previous works, we have successfully used the 
FLANN in modeling solar cells [7] - [11], and our current 
work verifies its effectiveness in MPP tracking. 

Fig. 2. The P&O fails to determine the right tracking direction to 
the MPP (adopted from [6]). 

2. SYSTEM DESIGN 

In this section, we introduce the two-diode PV array model 
and the fundamental principle of the FLANN.  

2.1 Two-diode PV array model 

A photovoltaic cell consists of silicon P-N junctions, which 
convert solar energy directly into electricity by photovoltaic 
effect. In our work, we use the two-diode model [12] for PV 
array modeling. It improves accuracy especially under low 
irradiance and reduces computational time. 

We consider that the PV array contains ssN  modules in 
series and Npp modules in parallel. The output current of the 
PV array is given by the equation [12] 
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where I is the photovoltaic output current, V is the photovol-
taic output voltage, λ = Nss / Npp , Rs and Rp are the series and 
parallel resistances, respectively, Vt is the thermal voltage of 
the two diodes (Vt = Ns k T / q), k is the Boltzman constant, q
is the electron charge, and a1, a2 are the diode ideal constants. 
The light generated current is given by 
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where Ipv_STC represents the light generated current under 
standard test conditions (STC) with temperature TSTC = 25�, 
and irradiance GSTC = 1000 (w/m2),  and the constant Ki is the 

short circuit current coefficient. The reverse saturation cur-
rent of the diode is given by 
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where the constant Kv is the open circuit voltage coefficient, 
Isc_STC is the short circuit current under STC, and Voc_STC is 
the open circuit voltage under STC. In fact, the equation (1) 
can be represented as I = f (I, V). Therefore, for a given vol-
tage value, this nonlinear equation is solved using standard 
Newton-Raphson method. For the converter, by tuning the 
duty cycle (Dc), the output voltage (V0) is obtained from its 
input voltage (Vin) by formula V0=Vin / (1 - Dc). 

The PV modules used in this work are SL80CE-36M. 
They are configured as two PV modules in series with 72 
solar cells in series inside each module. The parameters of 
each module are, maximum power: 80 W, optimum power 
voltage (Vmp): 35.1 V, optimum power current (Imp): 2.28 A, 
open circuit voltage (Voc): 43.2 V, short circuit current (Isc): 
2.44 A, short circuit current coefficient (Ki): 0.976 mA/�, 
and open circuit voltage coefficient (Kv): -164.16 mV/�. 

2.2 Principle of the FLANN 

The FLANN consists of a functional expansion block (FEB) 
and a single-layer perceptron network as shown in Fig.3. 
Irradiance and temperature are the inputs of the PV arrays. 
The functional expansion block is used to transfer the input 
variable into a higher dimension space [13]. The expanded 
inputs are connected to the output layer, which is activated 
by a hyperbolic tangent transfer function. The purpose of 
training net is to minimize the cost function to a particular 
limit by modifying network weights continuously. We used 
Levenberg - Marquardt (LM) algorithm to train the network.  

∑

Fig. 3. Schematic diagram of the FLANN. 

We denote the inputs (irradiance and temperature) by 

                                 ],[ 21 ′= xxX                                       (4) 

where X is a input sample with total number of P, and (') 
denotes transposition. Based on various trials on different 
functional expansion of trigonometric polynomials, we 
chose the trigonometric expansions as follows 
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Thus, the expanded input is L = [L0, L1, L2, ..., L15]'. By 
using LM algorithm, the weights and biases are tuned until 
the cost function is minimized within a limit. The cost func-
tion for the kth sample data is given by 
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where Tk is the target output and Ok is the network output 
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where the input of the hyperbolic tangent transfer function is 
given by 

kkk LWU ′=  (8) 

where Wk=[wk,0, wk,1, wk,2, ..., wk,15]' is the weight vector for 
the kth sample.  

2.3 Generation of data set for training the network

In our proposed FLANN-based controller, the inputs are 
irradiance and temperature, and the output is the optimal 
operating voltage for the PV array. The process of getting 
optimal operating voltage at different irradiance and tem-
perature conditions are illustrated in Fig. 4. Firstly, the PV 
array model is built as described in section 2.1. Secondly, 
the P-V curves for different irradiance and temperature con-
ditions are generated. In the next step, maximum power for 
each P-V curve is computed and finally, the optimal operat-
ing voltages for each P-V curve are obtained.  

Fig. 4. Process of generating training data sets.

During data generation, temperature is increased by 2�
per step from 0 to 70�, and irradiance is added by 50 w/m2

per step from 0 to 1500 w/m2. Thus, 1050 groups of samples 
are generated. These data are randomly divided into three 
parts, of which 80% is used for training, 10% for validation, 
and 10% for testing.  

3. EXPERIMENTAL RESULTS 

Here, we provide the experimental setup and MPPT perfor-
mance comparison between FLANN and other algorithms. 

3.1 Setup 

In order to verify that the FLANN have (i) lower computa-
tional complexity than multilayer perceptron (MLP) control-
ler does and (ii) higher efficiency than P&O under rapidly 
changing irradiance inputs, a PV system was built based on 
MATLAB and three experiments were conducted as below. 

Experiment 1. This experiment compares the computation-
al complexities of FLANN [13] and MLP [4]. The computa-
tional complexity is reflected by calculating the average 
execution time of one iteration during training process. The 
number of additions, multiplications, tanh(.) and trigonome-

tric expansions can also be evaluated as in [13]. Here, we 
consider a two-layer MLP with {2 - 8 - 1} and a FLANN 
with {16 - 1} architecture. Same training parameters are set 
for both networks. Thirty runs were conducted for each al-
gorithm. Training goal of mean squared error was 0.0005, 
maximum iterations for training was set to 100, learning rate 
was 0.2, and other parameters were set with default values.  

Experiment 2. This experiment was carried out to compare 
the efficiency of FLANN, P&O, and MLP under rapidly 
changing irradiance with a trapezoidal shape. The tempera-
ture was set constant at 35�. The efficiency of the algo-
rithm is calculated as 
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where idealP and outputP  are ideal power output and power 

output by P&O or by FLANN respectively. 

Experiment 3. This experiment was conducted to compare 
the energy output of FLANN, P&O, and MLP controllers 
under the real weather conditions. The ideal energy (Eideal

(kWh)) and the energy (Eα (kWh)) produced using different 
algorithms during the time interval, [t1, t2], are given by  
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The energy loss (EL,α) is calculated by 
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3.2 Results 

Using the results from Experiment 1, Table 1 shows the 
comparison of maximum, minimum iterations and average 
execution time per iteration to train the network. It shows 
that the training time of FLANN per iteration is about 3.4 
times shorter than that by MLP, which means that FLANN 
gives a faster convergence speed than that by MLP. In addi-
tion, the number of average iterations to converge by 
FLANN is also much less than that by MLP. Due to the ab-
sence of hidden layer in FLANN, it is computationally inex-
pensive. The characteristic of less computational complexity 
by FLANN than that by MLP can also be found in [13]. 

Using the results from Experiment 2, Fig. 5 shows that 
for constant irradiance, such as from 10 sec to 30 sec, all 
three algorithms exhibit the same performance with effi-
ciency of 94.5%. However, when irradiance changes from 
120 w/m2 to 1000 w/m2 in 15 seconds from 30 sec to 45 sec, 
the P&O method fails to follow the transient power and the 
efficiency falls down from 94.5% to around 55%. Whereas, 
the FLANN and MLP controllers track this transient process 
very well with a higher efficiency than stable stage. 

Fig. 6 shows the power output under real weather con-
dition obtained from Experiment 3. To highlight the effec-
tiveness of different MPPT controllers under rapid change in 
irradiance, a magnified portion of Fig. 6 is shown in Fig. 7. 
We can see that P&O algorithm in green line fails to follow 
the ideal power line. Whereas, the FLANN and MLP can 
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track the maximum power line very well. Table 2 shows that 
with an ideal energy output of 0.8867 kWh by the equation 
(10), the energy loss calculated from (11) reduces by 
1.342% and 1.354% using FLANN and MLP respectively. 
This demonstrates that ANN methods exhibit higher effi-
ciency under rapidly varying weather conditions. The more 
irradiance transitions, the more effective FLANN based 
MPPT is. With this improvement, more energy can be saved 
in a long-term running. For example, for a medium sized PV 
solar power station with an annual generation of 30 GWh, 
402.6 MWh of energy can be saved each year with adoption 
of FLANN. Therefore, it is favorable to use the FLANN as a 
MPPT controller in the PV systems if the computational 
complexity and fast-changing environmental conditions are 
considered. 
Table 1. Comparison of execution characteristics for MLP and 
FLANN during training process within 30 runs. 

ANN 
type 

Network
structure

No. of  iterations Avg. execution 
time / epoch (ms) Mean Max. Min.

MLP 2-8-1 13 73 4 219.6 
FLANN 16-1 7 12 3 63.8 

Table 2. Energy loss of three trackers under real irradiance data. 

Algorithm P&O MLP FLANN 
Energy (kWh) 0.8481 0.8601 0.8600 

Energy Loss (%) 4.3532 2.9999 3.0112 

Fig. 5. Power output under irradiance with trapezoidal shape.

Fig. 6. Power by P&O, MLP and FLANN on 19 July, 2011. 

  

Fig.7. Blow up of Fig. 6 from 12:40pm to 12:50pm. 

4. CONCLUSIONS AND FUTURE WORK 

We proposed a novel FLANN-based controller for MPPT in 
PV system. Compared to other two traditional methods, 
P&O and MLP, it excels P&O for its ability to track MPP 
under rapidly changing conditions, and shows advantages 
over MLP in training time and computational complexity. 
By conducting three different experiments, better efficiency 
and lower power loss with FLANN controller are verified. 
Since FLANN structure reduces system complexity, it 
achieves relatively lower expense if implemented on hard-
ware. In addition, it is important to point out that when un-
der a long-term running, the accuracy of the prediction by 
the network can be improved by training the network after a 
certain running period. Our future work includes 1) imple-
menting this algorithm in hardware, 2) investigating the 
intelligent methods to optimize the dimensions of the ex-
panded inputs and considering MPPT issues under partially 
shaded conditions. 
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