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ABSTRACT
Deep Neural Networks (DNNs) have shown remarkable success
in pattern recognition tasks. However, parallelizing DNN training
across computers has been difficult. We present the Deep Stack-
ing Network (DSN), which overcomes the problem of paralleliz-
ing learning algorithms for deep architectures. The DSN provides
a method of stacking simple processing modules in buiding deep
architectures, with a convex learning problem in each module. Ad-
ditional fine tuning further improves the DSN, while introducing mi-
nor non-convexity. Full learning in the DSN is batch-mode, making
it amenable to parallel training over many machines and thus be scal-
able over the potentially huge size of the training data. Experimental
results on both the MNIST (image) and TIMIT (speech) classifica-
tion tasks demonstrate that the DSN learning algorithm developed
in this work is not only parallelizable in implementation but it also
attains higher classification accuracy than the DNN.

Index Terms— deep learning, stacking, DNN, DSN, convexity

1. INTRODUCTION
Deep Neural Networks (DNNs) are extremely powerful in perform-
ing machine learning tasks including image classification, speech
recognition, and speech coding [1–3]. However, training DNNs is
computationally difficult. In particular, fine tuning DNNs requires
stochastic gradient descent, which is unusually difficult to paral-
lelize across machines. This lack of parallelism makes learning at
large scale practically impossible. For example, it has been possible
to use one single, very powerful GPU machine to train DNN-based
speech recognizers with dozens to a few hundreds of hours of speech
training data with extraordinary results; e.g., [2, 3]. It is very diffi-
cult, however, to scale up this success with thousands or more hours
of training data. The goal of the research described in this paper is
a scalable method for buidling deep classification architectures. We
present the Deep Convex Network (DSN) whose architecture can be
created by a process called stacking and whose learning can be effec-
tively parallelized at every step. Since the basic learning algorithm
of DSN is convex, it can also be called deep convex network.

The main theoretical motivation of this work is the desire to
learn complex functions from large data sets with parallel learning
algorithms in order to solve large-scale, hard problems, which has
been part of machine learning for many years. Many researchers
think that tractably solving this problem can bring us closer to the
dream of Artificial Intelligence [4]. Learning complex functions ef-
fectively without over-fitting is a challenging task, however.

A popular method for effective learning of complex functions
is to compose simple functions first and then “stack” them [5]. In
stacking, simple functions are composed in a chain, with the output
of one feeding the input of the next. The job of each of the functions
is to estimate the same target. An early example of a stacking-like
architecture was Cascade Correlation [6], although it was prone to

overfitting. Wolpert [5] used a variant of cross-validation to mini-
mize overfitting as the functions were stacked. Cohen and de Car-
valho [7] successfully stacked CRFs to emulate long-range inference
in NLP. Similarly stacked, deep-CRF was used in speech process-
ing [8]. In this paper, we present an architecture that is similar to
stacking, in that it is built up in stages, each stage trying to estimate
the same targets.

There has been recent excitement around using unsupervised
Deep Belief Network [1] and Deep Boltzmann Machine [9]. The
latter held the previous record for undistorted MNIST with a non-
convolutional network. These architectures directly inspired the ar-
chitecture presented in this paper, and we present our stronger re-
sults in both MNIST image classification and TIMIT speech classi-
fication. Some preliminary work and results for speech classifica-
tion was presented in [10]. In this paper, we provide new ways of
stacking up the DSN, emphasizing its stacking property instead of
convexity one. In particular, we describe how the weight matrices
are initialized while stacking up new modules. We also report more
comprehensive evaluation results for image and speech classification
tasks of MNIST and TIMIT.

2. DSN: AN ARCHITECTURAL OVERVIEW

In this section, we provide an overview of the DSN architecture. We
use a specific example of the DSN, shown in Fig. 1 (used in our MN-
SIT experiment), to describe DSN’s modular and layered structure.
A DSN includes a variable number of modules, with three modules
shown in Fig. 1 although most experiments reported in this paper
involve much deeper DSNs. Each module is a specialized neural
network, which is grouped with a distinct color in Fig. 1, consisting
of a single hidden layer and two trainable sets of weights.

Different modules of the DSN are constructed somewhat dif-
ferently. The lowest module comprises the following three layers
for information processing. First, there is a linear layer with a set
of input units. They correspond to the raw input data in the vec-
tored form. Let N input vectors in the full training data be X =
[x1, ...,xi, ...,xN ], with each vector xi = [x1i, ...,xji, ...,xDi]

T .
Then, the input units correspond to the elements of xi, with dimen-
sionality D. Second, the non-linear layer consists of a set of sig-
moidal hidden units. Denote by L the number of hidden units and
define hi = σ(WT

1 xi) as the hidden layer’s output, where σ(.) is
the sigmoid function and W1 is an D × L trainable weight matrix,
at the bottom module, acting on the input layer. Note the bias vector
is implicitly represented in the above formulation when xi is aug-
mented with all ones. Third, the output layer consists of a set of
C linear output units with their values computed by yi = UT

1 hi,
where U1 is an L × C trainable weight matrix associated with the
upper layer of the bottom module. Again, we augment hi with a
vector consisting of all one’s. The output units represent the targets
of classification (or regression).
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Fig. 1. Illustration of the basic architecture of DSN

Above the bottom one, all other modules of a DSN, which are
stacking up one above another, are constructed in a similar way to
the above but with a key exception in the input layer. Rather than
making the input units take the raw data vector, we concatenate the
raw data vector with the output layer(s) in the lower module(s). Such
an augmented vector serves as the “effective input” to the immedi-
ately higher module. The dimensionality, Dm, of the augmented
input vector is a function of the module number, m, counted from
bottom up according to

Dm = D + C(m− 1), m = 1, 2, · · · ,M (1)

where m = 1 corresponds to the bottom module.
A closely related difference between the bottom module and the

remaining modules concerns the augmented weight matrix W. The
weight matrix augmentation results from the augmentation of the
input units. That is, the dimensionality of W changes from D × L
to Dm ×L. Additional columns of the weight matrix corresponding
to the new output units from the lower module(s) are initialized with
random numbers, which are subject to optimization to be presented
in Section 4.

3. THE BASIC LEARNING ALGORITHM

3.1. Convex Optimization for Weight Matrix U Given W
The convex optimization technique covered here applies to all mod-
ules of a DSN. Implementation of the technique differs for distinct
modules mainly in ways of setting the lower-layer weight matrices
W in each module, which varies its dimensionality across modules
according to Eq. 1, before applying the learning technique presented
below.

Here we assume the supervised learning setting. Both train-
ing data X = [x1, ...,xi, ...,xN ] and the corresponding labeled
target vectors T = [t1, ..., ti, ..., tN ], where each target ti =
[t1i, ..., tji, ..., tCi]

T , are available. We use the loss function of
mean square error to learn weight matrices U assuming W is given.
That is, we aim to minimize: E = Tr[(Y −T)(Y −T)T ], where
Y = [y1, ...,yi, ...,yN ]. Importantly, if weight matrix W is de-
termined already (e.g., via judicious initialization), then the hidden
layer values H = [h1, ...,hi, ...,hN ] are also determined. Conse-
quently, upper-layer weight matrix U in each module can be deter-
mined by setting the gradient

∂E

∂U
= 2H(UTH−T)T (2)

to zero. This is a well established convex optimization problem
and has a straightforward closed-form solution, known as pseudo-
inverse:

U = (HHT )−1HTT . (3)

3.2. Setting Weight Matrices W across DSN Modules
In the basic algorithm, the weight matrices W across all DSN mod-
ules need to be set empirically before the application of Eq.3 for de-
termining the weight matrices W module by module. For the bottom
module, we have experimented two ways of setting W. First, ran-
dom numbers are generated with various distributions. The results
are then used for setting W. Second, restricted Boltzmann machines
(RBM) are trained separately using contrastive divergence [1]. Then
the trained RBM weights are used to set W. For all non-bottom mod-
ules, we copy the same RBM for W, which is appended by random
numbers for the augmented columns.

4. THE FINE-TUNING ALGORITHM
In this section, we present a batch-mode, parallelizable fine tuning
algorithm that improves upon the basic algorithm. In contrast to fine
tuning for DNN of [1], our fine tuning adjusts the weight matrices
W and U module by module, not involving any global fitting over
the entire architecture and thus reducing over-fitting. The essence of
the DSN fine tuning is to exploit the structural relationship between
W and U in each module, as expressed in Eq.3, in computing the
gradient of the loss function with respect to W.

4.1. Gradient Computation Embedding Eq.3
We derived the close-form expression of gradient ∂E

∂W
by consider-

ing the effect of W on U and, consequently, the effect on loss E:

∂E

∂W
=

∂Tr[(UTH−T)(UTH−T)T ]

∂W
(4)

= 2X[HT ◦ (1−H)T ◦ [H†(HTT )(TH†)−TT (TH†)]

where H† = HT (HHT )−1 and ◦ denotes element-wise matrix
multiplication. In deriving Eq.4, we used the fact that HHT is sym-
metric and so is (HHT )−1.

The batch-mode fine tuning algorithm then updates W using the
gradient computed in Eq.4. Weight matrix U is subsequently updated
using Eq.3 in a closed form with no iteration.

4.2. Initializing W over DSN Modules before Fine Tuning
For the bottom module of a DSN, W is initialized in the same way
as in the basic algorithm described previously. For all higher mod-
ules, we have devised four different strategies of W initialization for
iterative fine tuning. The sub-matrix of W corresponding to the out-
put units from the lower modules is always initialized with random
numbers. The remaining portion of W associated with the input data
is initialized in the following four possible ways:

• Take the same W from the immediately lower module already
adjusted via fine tuning.

• Take a copy of the RBM that initialized W at bottom module.

• Use random numbers, making the full W maximally random
before fine tuning.

• Mix the above three choices with various weighting and with
randomized order or otherwise.

It was found that with sufficient efforts put to adjust all other
hyper-parameters, all four strategies above eventually gave similar
classification accuracy. One interesting observation is that fully ran-
dom initialization of W at non-bottom modules (the third strategy
above) does not give worse accuracy but it takes many more mod-
ules and fine-tuning iterations than other strategies. Importantly, this
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observation does not hold for the bottom module. As we will show
in Section 5, the use of RBM to initialize the bottom module always
gives much better accuracy than using random numbers.

5. EXPERIMENTS ON IMAGE CLASSIFICATION
5.1. Experimental setup and general results
We evaluated the DSN and the associated learning algorithms on
the standard MNIST database of binary images of handwritten dig-
its [11]. The task is to classify each 28x28 image into one of the
10 digits. The MNIST training set is composed of 60,000 examples
from approximately 250 writers, part of which is used as the devel-
opment set. The test set is composed of disjoint 10,000 examples.
Fig. 1 showed the architecture of the DSN used in the experiments.
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Fig. 2. MNIST test set percent classification error rate.

Fig. 2 gives results of percentage error rate as a function of the
modules in the DSN of Figure 1 and of the iteration number of the
fine tuning algorithm applied to each module. In the horizontal axis
of Figure 2, “0” indicates the beginning of a new module, and “1”,
“2”, “3”... signifies the epoch number in the running of the batch-
mode fine tuning algorithm described in Section 4. Note that when
the first few new modules are added, large error reductions are pro-
duced for both training and test sets. After 10 modules, while the
training error rate is still in the downward trend, the test error rate
stops further drop. The best testing error rate of 0.83% is obtained
with 10 modules of DSN, the best result reported in the literature on
undistorted MNIST without specifying convolutional structure.

In the experiment of Fig. 2, we use an RBM to initialize the
weight matrix W in the lowest module of the DSN, which is then
subject to fine tuning. When stacking up to the second module, the
fine-tuned weight matrix is copied, mixed with a new weight sub-
matrix initialized by random numbers. The sub-matrix corresponds
to the output units from the bottom module. This combined weight
matrix is then again subject to fine tuning in the second module,
producing a new set of outputs in this new module. This process is
continued until the top module of DSN. We also use a theoretically
motivated scaling number on the raw data to train the RBM and use
the same number to scale the data in training and testing the DSN.

5.2. Comparative results
In Fig. 3, we show results of using random samples from [−1, 1] to
initialize the weight matrix W at the DSN’s bottom module. The
basic algorithm is used for learning weight matrix U without fine
tuning. As the numbers of DSN modules and hidden units increase,
the error rate drops significantly. Similar trends hold when RBMs
are used to initialize the weight matrix W and when fine tuning is
applied, with the important difference that the effect of increasing
DSN modules is much stronger than that of increasing the hidden
size.

In Table 1 we present error rate comparisons in the MNIST test
set at the convergence of stacking DSN modules and fine tuning iter-
ations. All experiments are with the hidden layer’s size being fixed
at 3000. The conclusions are: 1) RBM is a powerful technique for
initializing weight matrices at the bottom module of a DSN, a similar

Fig. 3. Classification error rate (%) as a function of the number
of DSN modules and hidden units. Uniformly distributed random
numbers used to initialize W; no fine tuning.

conclusion reached for DNN [1]; and 2) fine tuning contributes sig-
nificantly to error reduction. On the latter, we note that the amount
of error reduction for DSN fine tuning is less than that of DNN [1].
This is likely due to the fact that the basic algorithm of DSN already
embeds discriminative learning while the pre-training step of DNN
is purely generative.

In Table 2, we compare the error rates for two versions of DNN,
the DSN, and the degenerated DSN when only one single module
is used (i.e, no stacking). This comparison highlights the power of
stacking up modules in DSN. Note the weight matrices W at the bot-
tom modules of all DSNs in Table 2 are initialized with RBMs. And
the second DNN in Table 2 is further trained with our best efforts
after duplicating the results of [1], carried out internally.

Table 1. Comparative error rates: Effects of initialization and fine
tuning

Weight Initialization Fine Tuning Error Rate (%)
Random (unit Gaussian) No 2.15
Random (uniform) No 2.02
Random (uniform) Yes 1.70
RBM No 0.95
RBM Yes 0.83

Table 2. Comparative error rates: DNN, DSN, & degenerated DSN
Models Error Rate (%)

DNN with fine tuning in [1] 1.20
DNN with further fine tuning 1.06

DSN (10 modules, with fine tuning) 0.83
DSN (one module, with fine tuning) 1.10
DSN (one module, no fine tuning) 1.78

6. EXPERIMENTS ON SPEECH CLASSIFICATION
We now report our experiments where similar kinds of DSN to Sec-
tion 5 are applied to speech database of TIMIT. The same speech
features and data are used as in [12]. Specifically, for the output at
each module of the DSN, we use 183 target class labels (i.e., three
states for each of the 61 phones), coded in binary zero or one, which
we call “phone states”.

In Fig. 4, we show the results of one typical experiment where
we use 6000 units in each module of the DNN. Slightly different
from the DSN used for the MNIST experiments, no skip-module
output layers are used in building the higher modules of the DNN.
In Fig 4, the frame-level phone-state classification percent error rate
(with 183 state classes), together with three other performance mea-
sures, is plotted as a function of the training epoch (i.e. a full sweep
of full 1.12M super-frames). These other measures include the
frame-level phone classification percent error rate (61 phone classes
as well as folded 39 phone classes) for the core test set when the er-
rors in the state within the same phone are not counted. The results
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Fig. 4. Frame-level classification error rates on TIMIT core test and
training sets. Training set error rates for classifying 183 states in
blue; Test set error rates with 4 measures in separate colors.

shown in Figure 4 are obtained when the mini-batch size was set to
200,000 in fine tuning, and the step size in gradient descent is set to
a value between 0.01 and 0.10. All hyper-parameters are tuned using
the development set.

Like the MNIST task, we have also found empirically in the
TIMIT task that if random numbers are used for initializing the
weight matrix W instead of using RBM, then the error rate becomes
significantly higher.

For comparison, we ran the DNN system of [12] on the same
TIMIT data and found the corresponding frame-level phone state
error rate to be 45.04 % (which gave excellent 22% to 23% pho-
netic recognition error rate after running a decoder with a “bi-phone
language model” as reported in [12]). This frame-level error rate
achieved by DNN is slightly higher than the DSNs error rate of
43.86% we have obtained.

In Table 3, we show the dependence of frame-level state and
phone classification error rates on the hidden unit size and the num-
ber of modules in the DSN for the TIMIT core test set. All the
results shown are obtained after convergence of fine tuning at each
DSN module. It is interesting to note that three modules each with
2000 hidden units produce lower errors than one module each with
6000 hidden units. But 12 modules each with 2000 hidden units
give higher errors than four modules each with 6000 hidden units.
Selecting both depth and width are important to achieve the best per-
formance.

The experiments in Table 3 are carried out with the fine-tuning
algorithm that uses 250k super-frames as the mini-batch size, as any
larger size would run out of memory in the experimental single ma-
chine with 48G memory. Parallel implementation of the learning
algorithm over CPU clusters, which is ongoing, will remove such a
constraint and enable full batch learning.

Table 3. Frame-level state and phone error rates vs. DSN modules
and hidden unit size.

No. Hiddens No. modules State Err (%) Phone Err (%)
6000 8 43.86 23.90
6000 4 44.24 24.25
6000 1 46.88 26.95

2000 12 44.29 24.56
2000 3 45.24 25.20
2000 1 51.07 30.95

7. SUMMARY AND FUTURE WORK
In this paper, we present a novel DSN architecture enabling paral-
lel training on potentially very large data sets. Previous results on
training DNNs for large-vocabulary speech recognition were limited

to only 48 hours [2] and 300 hours [3] of training data. The new
architecture is likely to free this limit. Experimental results on both
MNIST and TIMIT demonstrate higher classification rates achieved
by DSN than DNN.

In addition to the success of DSN as a powerful classifier on
speech and image classification tasks presented in this paper, DSN
has more recently been applied to speech understanding [13] with
strong results. Also, the drastic error reduction of speech attribute
detection achieved already by using DBN [14] is expected to be
again enhanced by DSN (work ongoing). Further, our recent ex-
tension of the DSN architecture to a tensor version [15] has demon-
strated huge architectural flexibilty of the stacking and parallel learn-
ing mechanisms presented in this paper, and a vast opportunity exists
in exploiting such flexibility for potential successful applications in
a wide range of information processing tasks.
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