
TUNING-FREE STEP-SIZE ADAPTATION

Ashique Rupam Mahmood Richard S. Sutton Thomas Degris Patrick M. Pilarski

Department of Computing Science, University of Alberta, Edmonton, AB, Canada

ABSTRACT
Incremental learning algorithms based on gradient descent are

effective and popular in online supervised learning, reinforce-

ment learning, signal processing, and many other application

areas. An oft-noted drawback of these algorithms is that they

include a step-size parameter that needs to be tuned for best

performance, which may require manual intervention and sig-

nificant domain knowledge or additional data. In many cases,

an entire vector of step-size parameters (e.g., one for each

input feature) needs to be tuned in order to attain the best per-

formance of the algorithm. To address this, several methods

have been proposed for adapting step sizes online. For exam-

ple, Sutton’s IDBD method can find the best vector step size

for the LMS algorithm, and Schraudolph’s ELK1 method,

an extension of IDBD to neural networks, has proven effec-

tive on large applications, such as 3D hand tracking. How-

ever, to date all such step-size adaptation methods have in-

cluded a tunable step-size parameter of their own, which we

call the meta-step-size parameter. In this paper we show that

the performance of existing step-size adaptation methods are

strongly dependent on the choice of their meta-step-size pa-

rameter and that their meta-step-size parameter cannot be set

reliably in a problem-independent way. We introduce a se-

ries of modifications and normalizations to the IDBD method

that together eliminate the need to tune the meta-step-size pa-

rameter to the particular problem. We show that the resulting

overall algorithm, called Autostep, performs as well or better

than the existing step-size adaptation methods on a number

of idealized and robot prediction problems and does not re-

quire any tuning of its meta-step-size parameter. The ideas

behind Autostep are not restricted to the IDBD method and

the same principles are potentially applicable to other incre-

mental learning settings, such as reinforcement learning.

1. STEP-SIZE ADAPTATION

In many application areas, data arrives abundantly as a stream

and must be processed on a moment-by-moment basis. Some

common examples of such application areas include online

supervised learning, reinforcement learning, and signal pro-

cessing. Learning algorithms that use data samples as soon

as available and that update their estimates incrementally are

among the most effective in these applications. These incre-
mental learning algorithms are typically based on gradient

descent and include one or more step-size parameters.

The Least Mean Squares (LMS) algorithm is one of the

most widely used incremental learning algorithms for online

supervised-learning applications. In the setting where the

LMS algorithm is commonly applied, data is considered to

arrive in a series of steps. At each step k, data is presented

as a vector of n input features x1,k, . . . , xn,k, where each

xi,k ∈ R, and as a single target output yk ∈ R. The target is

estimated as a weighted sum of the feature components. We

denote the error at step k as

δk = yk −
n∑

i=1

wi,kxi,k, (1)

where the wi,k ∈ R are learned weights. At each step the

LMS algorithm increments its weights proportional to the er-

ror and the corresponding feature:

wi,k+1 = wi,k + αδkxi,k,

where α > 0 is a scalar step-size parameter.

Although in the conventional LMS algorithm the step size

α is a scalar, better performance can be obtained if it is

a vector (a separate step-size parameter for each feature).

In either case, the problem of setting the parameter(s) and

the dependence of their best settings on the particularities

of the problem must be addressed. Several methods have

been proposed to set step-size parameters automatically.

Examples include the Incremental-Delta-Bar-Delta (IDBD)

method (Sutton, 1992a), which adapts a vector step size for

the LMS algorithm, and the ELK1 method (Schraudolph,

1999), which adapts the step-size parameters for neural net-

works (see also Sutton, 1981; Jacobs, 1988; Benveniste et

al., 1990). These methods have proven effective on several

large applications including 3D hand tracking (Bray et al.,

2004), brain–computer interfaces (Buttfield et al., 2006), and

real-time robot control (Schaal et al., 2001). These methods

all increment the components of the step-size parameter pro-

portional to an estimate of the partial derivative of the squared

error with respect to the step size, a sort of “meta” gradient

descent (Sutton, 1992a). The general idea is to update at each

step by

αi,k+1 = αi,k − μ
∂̂δ2t
∂αi

, (2)

where μ > 0 is a scalar meta-step-size parameter.

2121978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Autostep on Each Problem Averaged over All Problems

0

1

IDBD on Each Problem
M

S
E

 R
e
la

ti
v
e
 t

o
 S

ta
n

d
a
rd

 L
M

S

Autostep

ALAP
SGD-QN

IDBD
SMD

RLS

K1

10-6 10-410-10 10-8 10-4 110-210-10 10-8 10-6 10-6 10-410-10 10-8 10-2

meta-step-size parameter meta-step-size parameter meta parameter

Fig. 1. Our main results. Left: A representative step-size adaptation method, IDBD, performs better than standard LMS (the

dotted line), but only if its meta-step-size parameter is varied substantially from problem to problem. Middle: Our new method,

Autostep, performs well on all problems at the same value of its meta-step-size parameter (≈10−2). Right: If we restrict each

method to a single value of its meta parameter, then Autostep performs much better than all the other step-size adaptation

methods and the Recursive Least Squares (RLS) algorithm, and is more robust to the setting of its meta parameter.

2. DEPENDENCE ON THE META-STEP SIZE

Although step-size adaptation methods eliminate the need to

manually tune the step-size parameter, these methods intro-

duce a meta-step-size parameter which must itself be tuned.

In this section, we empirically demonstrate the dependence of

the existing step-size adaptation methods on their meta-step-

size parameters. We used two idealized supervised learning

problems and six robot prediction problems. The first ide-

alized problem is a benchmark nonstationary problem, taken

from Sutton (1992b). The second idealized problem is identi-

cal except that the variance of the target weights’ drift is 100

times larger. The robot prediction problems use a data set col-

lected by running a sensor-rich mobile robot inside a closed

testing environment for more than eight hours. This data con-

tains time records of 56 sensors over 3 million steps. The

data was divided into 30 sets for separate runs. The sensor

values were normalized such that their average was zero and

estimated variance was one. In each problem values of one

of the raw sensors at the next step were predicted by using

values of all the 56 normalized sensors at the previous step.

Six different sensors were picked as targets, each from a dif-

ferent class of sensors. As the sensor values varied frequently

over time due to the robot’s movements, these problems are

nonstationary and hence appropriate for step-size adaptation.

The data set is available online (RLAI, 2010).

On all problems, we applied the most prominent existing step-

size adaptation methods, including IDBD (Sutton, 1992a), K1

(Sutton, 1992b), ALAP (Almeida et al., 1998), SMD (Schrau-

dolph, 1999), and the method by Benveniste et al. (1990, see

also Kushner and Yang, 1995). All these methods follow

roughly the schema of (2). Performance for these methods

was measured by varying the meta-step-size values between

10−11 and 103. The step size for all methods was initialized

to a standard, roughly tuned value—0.1/n for the idealized

problems and 0.0001/n for the robot problems (values an or-

der of magnitude larger than this resulted in divergence for

most methods). For each method on each problem, we mea-

sured the Mean Squared Error (MSE), averaged over time

steps and then averaged over 30 runs. Our final performance

measure, shown in Figure 1, is the ratio of the method’s MSE

to the MSE of the conventional LMS algorithm with its step-

size parameter set permanently to the standard values. We

refer to LMS with this setup as standard LMS.

The left panel of Figure 1 shows the dependence and sensitiv-

ity of IDBD to its meta-step-size parameter on all the prob-

lems. With a low meta-step size (e.g., 10−11), IDBD is es-

sentially the same as standard LMS, and so its relative per-

formance was 1.0. Note that IDBD’s performance depended

strongly on its meta-step-size parameter. For example, for the

problem of predicting the robot’s acceleration sensor, the best

performance (lowest MSE) was achieved between 10−9 and

10−8 (leftmost blue curve) whereas, for the problem of pre-

dicting the current draw on the robot’s drive motor, the lowest

MSE was achieved for a meta-step size between 10−5 and

10−4 (red curve). This demonstrates that the best perform-

ing value of the meta-step-size parameter of IDBD shifts by

orders of magnitude across different problems. The ranges

of meta-step size that achieved good performance were also

narrow compared to the overall range of values that has to be

searched. Similar large shifts in the value of the best meta

parameter across problems were observed for all the other

methods except Autostep (middle panel), a new method that

we present in the next section. The right panel compares all

methods, averaged across problems, when restricted to a sin-

gle value of their meta parameter.

2122

3. THE AUTOSTEP METHOD

The main contribution of this paper is our proposed method,

Autostep (see also Mahmood, 2010), that adapts a vector

of step-size parameters without requiring tuning of its meta-

step-size parameter. The method is given in Table 1. Autostep

is based on the IDBD method, which is completely described

by (1) and the following three equations:

αi,k+1 = αi,k exp (μδkxi,khi,k) , (3)

wi,k+1 = wi,k + αi,k+1δkxi,k,

hi,k+1 =
[
1− αi,k+1x

2
i,k

]+
hi,k + αi,k+1δkxi,k,

where the hi,k, i = 1, . . . , n, are auxiliary memory variables,

and μ > 0 is a meta-step-size parameter as in (2).

Insight into why the best value of IDBD’s meta-step-size pa-

rameter varies from problem to problem can be gained by

doing a unit analysis of its update equations. The quantity

δkxi,khi,k appearing in its main update equation (3) has units

of y2 (where y is the target output). To maintain the units of

αi in (3), the meta-step size μ must have the inverse units,

that is, units of 1/y2 (so that the exponentiated quantity is

unitless). Hence, problems with different variances of target

outputs will require very different μs, and thus we see the

shifts in the first panel of Figure 1. Similar is true for all the

other step-size adaptation methods except ALAP. In ALAP,

the meta-step-size parameter is normalized so that it is unit-

less. However, in our experiments, the meta-step-size param-

eter of ALAP required tuning across problems. This is due to

the fact that the normalizer in ALAP is estimated as a running

average and it requires a number of iterations before mitigat-

ing the effect of units. Hence, a sudden change can abruptly

affect its step-size update.

A second problem that leads to parameter dependence in

IDBD is that the best range of μ is narrow. This range also

lies close to the value of μ for which IDBD starts to diverge.

If the step-size parameter can be checked against growing

large, a large μ may not result in such instability. None of

the step-size adaptation methods including ALAP consider

this issue; this is another potential reason why ALAP was not

effective in avoiding parameter tuning.

There are step-size adaptation methods that are not based on

meta gradient descent, such as SGD-QN (Bordes et al., 2009)

and those proposed by Sompolinsky et al. (1995) and Murata

et al. (1996). These methods incrementally update the step-

size parameter as a running average of some statistics, such as

the squared error or the norm of the gradient. These methods

contain tunable meta parameters as well. We investigated the

dependence of these methods on their meta parameters and

found similar shifts in their performance curves. We observed

that the shifts in these methods occur for similar reasons as for

methods based on meta gradient descent (e.g., due to units of

meta parameters).

Table 1. The Autostep Method

Initialization:
Set μ and τ as appropriate (e.g., 10−2 and 104)

for i = 1, . . . , n:

hi ← vi ← 0
Initialize wi and αi as desired (e.g., 0 and 0.1)

for each new data sample (x1, . . . , xn, y):
δ ← y −∑n

i=1 wixi

for i = 1, . . . , n:

vi ← max
(|δxihi|, vi + 1

τ αix
2
i (|δxihi| − vi)

)
(4)

if vi �= 0:

αi ← αi exp
(
μ δxihi

vi

)
(5)

M ← max
(∑n

i=1 αix
2
i , 1

)
(6)

for i = 1, . . . , n:

αi ← αi

M (7)

wi ← wi + αiδxi

hi ← hi

(
1− αix

2
i

)
+ αiδxi

To produce the Autostep method shown in Table 1, we in-

troduced two modifications to IDBD that together eliminate

the dependence of performance on the meta-step-size param-

eter. The first modification mitigates the shift in the best range

of μ across problems, and the second modification reduces

the sensitivity of performance to μ within the same problem

by reducing the step-size parameter whenever it would cause

overshooting. The method involves slightly more computa-

tion per step than IDBD, but note that its time and memory

complexity still scales linearly with the number of input fea-

tures.

The first modification of IDBD to produce Autostep is to nor-

malize each step-size update component δxihi with a running

maximum of its absolute values (see (4) in Table 1). As a

consequence, the normalized term δxihi/vi in (5) of Table

1 becomes unitless, its value cannot be more than 1.0, and

a sudden change in the target output cannot abruptly affect

the step-size update. Note that the update of the normalizer

vi uses αi in such a way that its speed of tracking is self-

regulated.

To understand the second modification, consider the quantity∑n
i=1 αi,k+1x

2
i,k, which might be called the effective step size

for step k. If this quantity is one half, then the error on a single

data sample would have been reduced by one half. In general,

letting δ′k denote the error on kth step after the weight up-

date (δ′k = yk −
∑n

i=1 wi,k+1xi,k), then a simple calculation

shows that
δk−δ′k

δk
=

∑n
i=1 αi,k+1x

2
i,k. It follows then that if

the effective step size is greater than one, then we will over-

shoot the minimum error. The second modification computes

the effective step size and, if it is greater than one, scales α
so that the effective step size is one (see (6) and (7) in Ta-

ble 1). The overall effect is to make overshooting, and thus

divergence, literally impossible for Autostep.

2123

4. RESULTS AND DISCUSSION

The performance of Autostep on our two idealized and six

robot problems is shown in the middle panel of Figure 1. In

contrast to the performance of IDBD, shown in the first panel,

the performance of Autostep did not shift with respect to μ
across problems. Curves with the same color in the two pan-

els are for the same problems. With μ = 10−2, Autostep

achieved near-best performance on all problems.

It remains unclear why μ = 10−2 performs best for Autostep

and whether this would be true generally. Examining the up-

date rules reveals that this value permits step sizes to change

by about 1% per step. Thus, it takes at least 70 steps to double

or halve a step size, which is fairly fast, while leaving enough

time to cancel out noisy fluctuations.

A second way in which Autostep is superior to and less pa-

rameter dependent than IDBD is that it eliminates the need

to tune the initial step size. Recall that IDBD required sig-

nificant tuning of the initial step size for the two classes of

problems, whereas Autostep used the same value (0.1) for all

of them. In fact, Autostep’s performance as measured here is

nearly insensitive to the initial step size. It does have some

effect on initial performance, but we have found that it is easy

to find an excellent initial step size for Autostep using the

standard rules of thumb for LMS, for example, by using 0.1
divided by the expected norm of the input feature vectors.

The third and final parameter of Autostep, τ , was 104 on all

problems in our experiments. Autostep’s performance was

not strongly dependent on τ , though further exploration of a

wider range of problems, and particularly of a wider range of

problem durations, is needed before a definitive statement can

be made. As a rule of thumb, we recommend setting τ to the

number of data samples expected to be needed for learning.

The utility of Autostep as a tuning free method is clearly

shown in the final panel of Figure 1, which shows perfor-

mance of all methods, averaged across problems, as a func-

tion of their meta parameter. Autostep performed dramati-

cally better than not only all the other step-size adaptation

methods, but also the Recursive Least Squares (RLS) algo-

rithm, a widely used linear learning algorithm when one can

afford quadratic per-step complexity. (The meta parameter

for RLS here is its forgetting factor.) Only Autostep achieved

an overall satisfactory performance with a single parameter

setting.

Autostep can be extended in interesting ways. Extensions to

nonlinear settings would make tuning-free step-size adapta-

tion possible for artificial neural networks. Extensions to re-

inforcement learning would be natural given that many re-

inforcement learning problems are inherently nonstationary.

We are currently exploring extensions of Autostep to online

temporal-difference learning.

5. REFERENCES

Almeida, L. B., Langlois, T., Amaral, J. D., and Plakhov, A. (1998).

Parameter adaptation in stochastic optimization. In Saad, D. (Ed.),

On-Line Learning in Neural Networks, pp. 111–134. Cambridge

University Press.

Benveniste, A., Métivier, M., and Priouret, P. (1990). Adaptive algo-
rithms and stochastic approximations. Springer-Verlag.

Bordes, A., Bottou, L., and Gallinari, P. (2009). SGD-QN: Care-

ful quasi-Newton stochastic gradient descent. Journal of Machine
Learning Research, 10:1737–1754.

Bray, M., Koller-Meier, E., Müller, P., Gool, L. V., and Schraudolph,

N. N. (2004). 3D hand tracking by rapid stochastic gradient de-

scent using a skinning model. In Proc. Intl. Conf. Artificial Neural
Networks, pp. 59–68.

Buttfield, A., Ferrez, P. W., and Millán, R. J. del. (2006). Towards

a robust BCI: Error potentials and online learning. IEEE Trans.
Neural Sys. Rehab. Eng., 14:164–168.

Jacobs, R. A. (1988). Increased rates of convergence through learn-

ing rate adaptation. Neural Networks, 1(4):295–307.

Kushner H. J., and Yang, J. (1995). Analysis of adaptive step size SA

algorithms for parameter tracking. IEEE Trans. Autom. Control,
40:1403–1410.

Mahmood A. (2010). Automatic step-size adaptation in incremental

supervised learning. Master’s thesis, Department of Computing

Science, University of Alberta, Edmonton, AB T6G 2E8.

Murata, N., Müller, K. R., Ziehe, A., and Amari, S. (1996). Adaptive

on-line learning in changing environments. In: Advances in Neu-
ral Information Processing Systems 9, pp. 312–318. MIT press.

RLAI (2010). daylong04.crtrlog.gz. Critterbot. Retrieved June 1,

2010, from http://critterbot.rl-community.org/logs.

Schaal, S., Atkeson, C., and Vijayakumar, S. (2001). Scalable tech-

niques from nonparametric statistics for real-time robot learning.

Applied Intelligence, 17(1):49–60.

Schraudolph, N. N. (1999). Local gain adaptation in stochastic gra-

dient descent. In: Proc. Intl. Conf. Artificial Neural Networks, pp.

569–574.

Sompolinsky, H., Barkai, N., and Seung, H. S. (1995). Online learn-

ing of dichotomies: Algorithms and learning curves. In Neural
networks: The statistical mechanics perspective. Proceedings of
the CTP-PBSRI Joint Workshop on Theoretical Physics, pp. 105–

130. Singapore: World Scientific.

Sutton, R. S. (1981). Adaptation of learning rate parameters. In:

Goal Seeking Components for Adaptive Intelligence: An Initial

Assessment, by A. G. Barto and R. S. Sutton. Air Force Wright

Aeronautical Laboratories Technical Report AFWAL-TR-81-

1070. Wright-Patterson Air Force Base, Ohio 45433.

Sutton, R. S. (1992a). Adapting bias by gradient descent: An incre-

mental version of delta-bar-delta. In Proc. 10th National Confer-
ence on Artificial Intelligence, pp. 171–176.

Sutton, R. S. (1992b). Gain adaptation beats least squares? In Proc.
of the 7th Yale Workshop on Adaptive and Learning Systems, pp.

161–166.

2124

