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ABSTRACT

Multiple works have proposed extensions of HMMs for

handling variability. We focus here on the design of HMMs

whose probability distribution on sequences depends on addi-

tional external variables that we call the context, which may

stand for emotion features in speech recognition, physical fea-

tures in gesture recognition, etc. We show experimentally the

relevance of the method for handwriting recognition.

Index Terms— Hidden Markov Model, Handwriting

Recognition, Context variables

1. INTRODUCTION

Hidden Markov Models are a famous class of probabilistic

generative model known for their simplicity and robustness

at classifying and labeling sequences. Despite their popular-

ity, they rely on several assumptions and a limited expressive

power. Among the principal shortcomings of the HMM is that

their states are mutually exclusive. So, it requires N states to

get N different output distributions.

The easiest way to handle variability in HMMs consists

in increasing the number of states, in increasing the size

of Gaussian mixtures, in using context dependent unit (e.g.

phone) models. Such a strategy is easy to implement but

leads to an increased number of parameters yielding estima-

tion difficulty and overfitting. To overcome this difficulty the

speech recognition community has focused on ways to share

parameters between states, for instance by using tied mixtures

where a pool of Gaussian is learned on all frames and where

only mixture weights are learned for every state or by directly

sharing states between different phone models [1].

Yet all these strategies allow handling local variability, at

the state level, but not global variability factors that affect the

whole sequence. The starting point of this work is that an im-

portant part of the variability between observation sequences

may be the consequence of a few contextual variables (which

may be hidden or observed) that remain fixed all along a se-

quence or that vary slowly with time. For instance a sentence

may be uttered quite differently according to the speaker emo-

tion. A gesture may have more amplitude if it is performed

slower, and its overall shape depends on the weight and on the

height of the performer. Such a global variability cannot al-

ways be removed through preprocessing or normalization and

would benefit from a specific handling in HMMs.

Few researchers have tackled this problem, by design-

ing a HMM whose probability distribution on sequences de-

pends on external variables, that we call here the context of

the sequence (that we note θ). [2] proposed Parametric Hid-

den Markov Models where the means of Gaussian distribution

vary linearly as a function of the context. As the output distri-

bution depends not only on the state but also on the context, a

model may express many distribution with a limited number

of additional parameters. [3], [4] and [5] investigated rather

similar approaches. All these approaches differ by the nature

of the dependency of HMM parameters to context variables,

the ability to deal with dynamic context variables, the ability

to infer context variables at test time.

We build here upon these pioneer works and propose a

framework for conditioning the probability distribution of a

HMM (means and covariance matrices) on a set of external

variables, that may vary in time, and that may eventually be

inferred at test time. In the following sections, we first intro-

duce our modeling framework and detail the two main cases

where the context remains fixed all along the sequence (time

independent modeling) and when it is dynamic. Then we

compare our approach with previous works. Finally we re-

port experimental results on a handwriting recognition task.

2. CONTEXTUAL HIDDEN MARKOV MODEL
(CHMM)

In the following we focus first on the case of single Gaus-

sian CHMM when θ is static and remain fixed all along a

sequence. Then we discuss variants including dealing with

dynamic θ and using Gaussian mixtures.

2.1. Time independent CHMM

2.1.1. CHMM modeling

First, assume that we are given a set of external (contextual)

variables θ (vector of dimension c) for any observation se-

quence x = (x1, ..., xT ) where xt’s are d-dimensional fea-

ture vectors (e.g. θ may be the length of x). We consider

HMMs where means and covariance matrices depend on θ.

Considering first single Gaussian models, we define the mean

μ̂j (d-dimensional vector) and the covariance matrix Σ̂j (d×d
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matrix) of the Gaussian distribution in state j as:

μ̂j(θ) = Wμ
j θ + μ̄j

Σ̂j(θ) = Dj(θ)× Σ̄j ×Dj(θ)

with Dj(θ) = diag(exp(WΣ
j θ + Σ̃j))

with Wμ
j and WΣ

j two d × c matrices of linear transform for

μ and Σ parameterization, and μ̄j and Σ̃j their offset coef-

ficients vector. Also we note the exponential of a matrix A,

exp(A), to be the matrix of the exponential function applied

componentwize to all elements of A, and we note diag the

function transforming a vector to a diagonal matrix. The use

of the exponential function ensures elements of Dj(θ) to be

strictly positive, which makes Σ̂j(θ) a valid covariance ma-

trix provided Σ̄j is one (note that Dj(θ), Σ̂j(θ) and Σ̄j are all

d× d matrices).

Actually the shape of μ̂j(θ) makes it linearly dependent

on θ while the shape of the covariance matrix makes the term

at uth row and vth column equal to:

Σ̂j(θ)(u, v) = Dj(u, u)×Dj(v, v)× Σ̄j(θ)(u, v)

Figure 1 shows the effect of such a parameterization on

the shape of a covariance matrix. The original covariance ma-

trix defines a shape in the upper left Figure which is modified

by various D matrix (three other plots).

Fig. 1: Parameterization of the covariance matrix (Top left)

with various D matrices: D = diag([1 2]) (Top right),

D = diag([2 0.9]) (Bottom left), D = diag([0.8 3]) (bottom

right).

It is interesting to note that such a model subsumes stan-

dard HMM (with means μ̄j and covariance matrices Σ̄j) by

setting Wμ
j and WΣ

j to null matrices and by setting Σ̃j to null

vectors. Also, considering only the mean parameterization

yields Parametric HMM as proposed in [2].

2.1.2. Training

To keep notation more compact, we first define the d×(c+1)

matrices Zμ
j =

[
Wμ

j μ̄j

]
, ZΣ

j =
[
WΣ

j Σ̃j

]
and the column

vector Ωk =
[
θk 1

]T
for sequence k. We consider we get a

set of training sequences along with their labels (i.e. classes)

and their context variables,
{
(xk, yk, θk)

}
.

Training consists in modifying the matrices Zμ
j and ZΣ

j

so as to maximize the likelihood of the training sequences. It

is performed in two steps:

• First, we learn a HMM with parameterized means only,

which is equivalent to learning a Parametric HMM [2].

This may be done by using following formulas:

Zμ
j =

⎡⎣∑
k,t

γk,t,jx
k
tΩ

kT

⎤⎦⎡⎣∑
k,t

γk,t,jΩ
kΩkT

⎤⎦−1

(1)

Σj =

∑
k,t γk,t,j(x

k
t − μ̂j(θ

k))(xk
t − μ̂j(θ

k))
T∑

k,t γk,t,j
(2)

where γk,t,j stands for the usual probability used in

standard HMM theory p(qt = j|xk, yk).

Then, for every state j, we set Σ̄j = Σj

• Fixing all models parameters, we reestimate the ZΣ
j

We initialize ZΣ
j = 0 which allows starting from the

covariance matrix obtained in first step: Σ̂j(θ) = Σj

Reestimation of ZΣ
j is performed via the Generalized

Expectation Maximization algorithm, by computing

the derivative of the auxiliary function Q (see [1]) with

respect to ZΣ
j and doing a gradient ascent. Omitting

details one can show without difficulty that:

∂Q

∂ZΣ
j

=
∑
k,t,i

Mk,t,j(i, i)×
∂D−1

k,j(i, i)

∂ZΣ
j

(3)

with Mk,t,j =

γk,t,j

[
Dk,j − Σ̄−1

j D−1
k,j(x

k
t − μ̂j(θ

k))(xk
t − μ̂j(θ

k))T
]

where

∂D−1
k,j(i, i)

∂ZΣ
j (m,n)

=

{
−Ωk(n)
Dk,j(i,i)

if i = m

0 otherwise.

2.2. Extensions

2.2.1. Time dependent CHMM

Now suppose θ depends on time. We then use the following

definition of the pdf in a state j:

μ̂j(θt) = Zμ
j Ωt

Σ̂j(θt) = Dj(θt)× Σ̄j ×Dj(θt)

It is straightforward to show that the reestimation formu-

las (1, 2, 3) apply if one changes systematically θ to θt. As a

result, Ωk becomes Ωk
t =

[
θkt 1

]T
and Dk,j becomes Dk,t,j .

New reestimation formulas are then simple extensions of (1,

2, 3). For instance, the closed form solution for Zμ
j becomes:

Zμ
j =

⎡⎣∑
k,t

γk,t,jx
k
tΩ

k
t

T

⎤⎦⎡⎣∑
k,t

γk,t,jΩ
k
tΩ

k
t

T

⎤⎦−1
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2.2.2. Gaussian mixtures

Extending single Gaussian models to Gaussian mixture mod-

eling may be done easily. The new pdf of lth Gaussian in state

j is then defined as:

μ̂j,l(θt) = Zμ
j,lΩt

Σ̂j,l(θt) = Dj,l(θt)× Σ̄j,l ×Dj,l(θt)

There is no difficulty to derive new reestimation formulas

by adding component index l in (1, (2) and (3)).

3. RELATED WORKS

A first attempt for conditioning HMM parameters on envi-

ronment variables seems to be the work from [2] who pro-

posed Parametric HMMs (PHMMs) for gesture recognition,

context variables were related to the amplitude of the ges-

tures. As we already said our modeling framework includes

PHMM as a special case when ignoring parameterization of

covariance matrices. A very similar approach (Multiple Re-

gression HMM, or MR-HMM) has been proposed in [6] for

speech recognition, using fundamental frequency as context

variable. Basically MR-HMM may be viewed as PHMM with

time dependent context variables θ. These models are again

embedded in our framework.

A second class of models called Variable Parameter

HMMs (VPHMMs) are closely related to our approach. This

type of model has been introduced in [3], [4]. It was proposed

in the context of speech recognition to improve robustness

to noisy conditions. In this approach the means as well as

the (diagonal) covariance matrices are expressed as a poly-

nomial function of a static scalar environment variable. Our

approach could be easily extended this way by using polyno-

mial expansion of the vector of context variables θ, yielding

polynomial dependency. In addition our approach may use

time depend multidimensional θ vectors and allows dealing

with full covariance matrices. Finally, our approach, alike

the one in [2], potentially allows (although we do not report

results here) inferring the environment variables at test time.

Finally the work by Dong Yu and Li Deng [5] is prob-

ably the most achieved approach of this kind, it has been

designed as [4] for noisy speech recognition. It refines

VPHMM using piece-wise spline interpolation instead of

polynomial regression and handle time dependent environ-

ment variable, together with discriminative training. Yet their

modeling assume diagonal covariance matrices and allow

one-dimensional conditioning variables only. This makes

VPHMM not so well adapted to exploit ”style environment

variables” like emotion, gender, height... that could a priori

affect all dimensions of the mean and covariance.

In this context the strength of our approach lies in the con-

ditioning of means and of full covariance matrices with a mul-

tidimensional vector of context variables.

4. EXPERIMENTAL RESULTS

We report here comparative results of standard HMMs and

of CHMMs on an off-line handwriting dataset [7]. Every se-

quence is an image of an isolated handwritten letter which

is preprocessed and represented at the end as a sequence of

9-dimensional feature vectors. We used 200 sequences for

training, 50 sequences for validation and 50 for testing, for

each of the 23 classes (3 classes, i.e. letters, have been re-

moved because under represented).

We use an 8 states left right model (HMM or CHMM)

for each class (letter) with full covariance Gaussian pdfs.

CHMMs and HMMs were trained up to convergence with

a maximum of 150 EM iterations. The training of CHMM

with covariance parameterization had an additional 150 GEM

iterations with one gradient step by EM iteration. In both

cases, model selection is performed as the set of models, at

a given iteration, that performs best on the validation set.

Initialization is performed according to a linear alignment of

training sequences on the left-right models: every training

sequence is divided in a number of segments of equal length,

one segment per state. Reestimation formulas are then used

with this linear alignment. In case we use Gaussian mixtures,

means and covariance matrices of a mixture are initialized by

Kmeans on the set of all observations aligned with the state.

We explored a few definitions of external variables θ,

all are quantities that are computed from the observation se-

quence. We used the mean (d dimensional vector noted ’μ’)

and the variance (d dimensional vector noted ’σ2’) computed

on the full sequence. We also tried the instantaneous deriva-

tive of the sequence averaged on the whole sequence (noted

’Δ’), and the instantaneous acceleration, also averaged on

the whole sequence (noted ’Δ2’). In addition to these static

context vectors we investigated dynamic ones, where these

quantities are computed on a sliding window rather than on

the whole sequence. This allows extending the approach

to sequence labeling tasks where one has to simultaneously

segment an input sequence into characters and recognize the

characters. This could be done by exploiting θ values that

depend on segmentation but this would lead to a costful dy-

namic programming step. Alternatively one can exploit time

varying θ by computing them locally in the sequence, which

is what we investigated. A number in parenthesis suffixing a

context variable name, like ’μ(5)’, means that θ is a function

of time and is averaged over a window of 5 frames centered

at current time (e.g. θt = mean(xt−2, ..., xt+2)).

We first report in Figure 2 the performance of HMMs wrt

the size of Gaussian mixtures. The accuracy in test increases

up to a plateau while accuracy still increases on training set,

showing the difficulty of learning more complex models.

Next we report in Figure 3 results using parameterization

of the means only (μCHMM), and of means and covariance

matrices (μΣCHMM), with static and with dynamic θ’s. Here

CHMMS are single Gaussian models (with 8 states). In this
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Figure, θ is computed as the vector of variances of frame fea-

tures, computed on the whole sequence or locally on a slid-

ing window of increasing size (absciss). As may be seen all

CHMM with either static θ or with dynamic θ(t) improve

over standard single Gaussian HMMs (60.5% accuracy). Al-

though static θ work already well, finding a good set up of

dynamic θ (e.g. window size) is harder. Yet equivalent or

slightly better results may be obtained with dynamic vari-

ables, meaning that the extension of this framework to signal

labeling (e.g. continuous speech recognition), where a static θ
is less relevant, should not be a problem. Finally, note that the

covariance parameterization gives an additional improvement

over mean only CHMMs. Figure 4 is similar but this time

θ = μ or θ = μ(t). One sees that as before CHMMs out-

perform single Gaussian HMM and that, more interestingly,

single Gaussian CHMMs outperform the best HMM models

whatever the size of Gaussian mixtures.

Fig. 2: 8 states Gaussian mixtures HMMs

Fig. 3: 8 states CHMM with θ = σ2 or θt = σ2(t)

Fig. 4: 8 states CHMM with θ = μ or θt = μ(t)
Lastly, Table 1 shows a number of richer modeling us-

ing dynamic θ mixing μ, σ, Δ, and Δ2 context variables,

for learning 8 states left-right CHMMs with Gaussian mix-

tures of size 1 to 4. It appears clearly here that one can get

nb gauss θ Train μCHMM Train μΣCHMM Test μCHMM Test μΣCHMM

1 μ(60) σ2(55) 80,7 81.2 67.3 69.0

1 μ(60) σ2(55) Δ(15) 82.6 82.6 68.4 68.4

1 μ(60) σ2(55) Δ(15) Δ2(15) 84.9 85.3 70.3 70.8

2 μ(60) σ2(55) Δ(15) Δ2(15) 97.8 92.3 71.48 73.2
3 μ(60) σ2(55) Δ(15) Δ2(15) 95.3 95.3 72.22 72.2

4 μ(60) σ2(55) Δ(15) Δ2(15) 97.3 97.3 71.9 71.9

Table 1: 8 states CHMM using mixed θ(t)

significant improvement over single Gaussian HMMs, and

over previous single Gaussian CHMM, by combining con-

text variables. Furthermore combining CHMM modeling

with increasing the size of Gaussian mixtures interestingly

still yields improvements. This may mean that these are two

complementary ways of modeling and capturing variability.

Overall, the best model uses mixed context variables and mix-

tures of two Gaussian and outperforms best standard HMMs

in Figure 2 by more than 6% accuracy.

5. CONCLUSION

We proposed a complete framework for learning contextual

Hidden Markov Models where means and full covariance ma-

trices are defined as function of external, i.e. context, vari-

ables. We show that this type of modeling global variability

significantly improve over standard HMMs. Moreover such a

modeling may be combined to more traditional ways of han-

dling variability such as increasing Gaussian mixture size.
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