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ABSTRACT 

 
This paper presents innovative collaborative filtering 
techniques to complete missing data in repeated medical 
questionnaires. The proposed techniques are based on the 
canonical polyadic (CP) decomposition (a.k.a. PARAFAC). 
Besides the standard CP decomposition, also a normalized 
decomposition is utilized. As an illustration, systemic lupus 
erythematosus-specific quality-of-life questionnaire is 
considered. Measures such as normalized root mean square 
error, bias and variance are used to assess the performance 
of the proposed tensor-based methods in comparison with 
other widely used approaches, such as mean substitution, 
regression imputations and k-nearest neighbor estimation. 
The numerical results demonstrate that the proposed 
methods provide significant improvement in comparison to 
popular methods. The best results are obtained for the 
normalized decomposition. 
 

Index Terms— Medical information systems, Health 
information management, Public healthcare, Data handling 
 

1. INTRODUCTION 
 
A common problem with questionnaires is missing data [1]. 
Some level of missing data in repeated questionnaires is 
frequent and cannot be avoided completely, despite 
enormous care and effort to prevent it [1]. For instance, 
patients may elect to leave one or more items unanswered 
either inadvertently or because they may not wish to respond 
to questions dealing with a sensitive topic [2]. Missing data 
may lead to biased parameter estimates and inflated errors 
[1]. Missing data imputation has been a classical research 
topic over the last decades. Numerous methods have been 
proposed including list-wise or case-wise deletion, pair-wise 
deletion, mean substitution, regression imputations, and 
weighted K-nearest neighbor (KNN). However, still there is 
need for better missing data estimation methods, which can 
predict incomplete data more accurately [3]. In this paper, 
we use a tensor factorization [4-6] method to complete 
missing data in repeated questionnaires. Our methods are 
based on tensor decomposition, i.e., canonical polyadic (CP) 

decomposition (a.k.a. PARAFAC); a repeated medical 
questionnaire can naturally be arranged as a three-
dimensional questionnaire, where the three dimensions are 
the questions, respondents, and follow-ups respectively. The 
proposed CP based methods predict missing responses in 
repeated questionnaires by effectively learning inherent 
collaborative relationship structure (from known responses) 
at different levels (among questions, respondents, and 
follow-ups). We illustrate our approach by a quality of life 
questionnaire filled by one hundred systemic lupus 
erythematosus (SLE) patients from hospitals in Singapore, 
China, and Vietnam. We use measures such as normalized 
root mean square error (NRMSE), bias, and variance to 
assess the performance of our methods and other widely 
used approaches, such as mean substitution, regression 
imputations, and k-nearest neighbor (KNN) estimation. Our 
results indicate that the proposed methods provide 
significant improvement compared to popular methods.  

This paper is organized as follows. In the next section, 
we briefly review some standard imputation methods. In 
Section 3, we outline our proposed methods, and in Section 
4, we describe our data set. In Section 5, we describe our 
results, and we provide concluding remarks in Section 6. 

 
2. CLASSICAL METHODS FOR MISSING VALUE 

IMPUTATION 
 

A naïve approach is to replace the missing response of a 
question by the mean of its known responses, which is 
referred to as mean substitution (MS). The method is easy to 
implement and use, however, it decreases the variance of the 
responses. Another popular family of methods is based on 
regression, which exploits correlation among known 
responses to impute missing response. We consider here an 
advanced regression imputation method called “iterative 
local least square method for missing value imputation” [7] 
as benchmark for our proposed methods. Another popular 
missing value imputation method is weighted k-nearest 
neighbors (KNN), which imputes a missing response of a 
question as the weighted sum of its known responses from 
respondents with similar responses to other questions. The 
performance of KNN is highly dependent on the choice of k. 
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With small k, results may suffer from outliers, while for 
large k, uncorrelated respondents start to play a role in the 
predictions [8]. (In our experiments, we implemented KNN 
method with k=10, as that choice provided the best results.) 

3. TENSOR DECOMPOSITION FOR MISSING DATA 
IMPUTATION 

3.1. CANDECOMP/PARAFAC (CP) 

Tensors (a.k.a. hypermatrices or multi-way arrays) are multi-
dimensional arrays [9]. An order N tensor 

1 2 ND D D
Nχ NDNN1 2D D1 2DD2 D has 1 2( )N Nsize D D Dχ NDN , where Di is 

the size of its ith. 
CP is a technique of factorizing a tensor into a minimal 

sum of rank-one tensors. A rank-one tensor of order M is a 
tensor which can be written as the outer product of M 
vectors, i.e. 
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mV mIm . CP decomposition of tensor 

Nχ into R rank-one tensors can be represented as follows: 
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where rU is the rth factor of tensor Nχ . From (1) and (2) we 
can write as follows  

1 2
1 1

NR R

N r r Nr nr
r r n

χ V V V V
1

R N

nrnrr Nr2 nn2r Nr2 , (3) 

where vector nI
nrV nIn , i jV VjVj  denotes the outer product 

of tensor iV  to tensor  jV .  
 
 
 
 
 
 

Figure 1. CP decomposition of a three dimensional tensor 
 

Figure 1 is the schematic representation of the CP 
factorization of a three dimensional tensor. It has been 
shown that for any tensor there is unique CP factorization 
[9]. The number of rank-one tensor into which a tensor is 
factorized is equal to its rank. By omitting some of the rank-
one tensors in the decomposition, one can obtain an 
approximate decomposition. CP factorization is a non-
polynomial time complex problem [9]. Approximation 
methods are used to estimate CP factorization [4-6]. The 

goal of approximation methods is to minimize the 
reconstruction error (also called approximation or estimation 
error), which can be defined as: 
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where 
1 2, , Ni i ix

Ni
is an element of tensor Nχ  at position 

1 2, , Ni i iNi  and 
ni nrv  is the in

th element of vector nrV . 
 

3.2. Missing data imputation using CP 
 
In order to predict missing data, CP learns the latent 
structure and collaborative relationships among the different 
dimensions of the tensor (rows, columns, tubes). In medical 
questionnaire data, the dimensions are questions, 
respondents, and follow-ups respectively. CP is very 
effective in capturing dependencies in high-dimensional 
datasets. Therefore, it can effectively be used for missing 
data analysis. Acar et al. [10] proposed a tensor factorization 
model which can be used with incomplete data tensors, i.e. 
tensors having some of their values missing. An incomplete 
data tensor Nχ  is multiplied with a tensor NN  of size equal 
to the size of tensor Nχ  of binary elements. Each element of 

NN  defines if the corresponding element of the tensor Nχ  is 
missing or known. This is solved as an optimization problem 
minimizing the reconstruction error function defined as 
follows: 
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The optimization problem in (5) is formulated as a 
weighted least square problem, which may be solved using 
Nonlinear Conjugate Gradient based method [4-6]. 

 
3.3. CP with column normalized tensor 
 
Since data in a tensor may be unbalanced, it is often 
recommended to normalize a tensor before decomposing it. 
In particular, the responses from different patients might 
vary substantially. We therefore normalize each column 
(corresponding to individual patients) by subtracting the 
mean. An element 

1 2, , Ni i ix , Ni, of the column normalized tensor 

Nχ  of a tensor Nχ  can be defined as follows:  
                             

1 2 1 2 1 3, , , , , ,N N Ni i i i i i i i ix x x
N N N1 2 1 31 2 ,1 2 1 32 11 2i i i i i i i1 2 1 31 2 11 2 1 31 21 2 1 ,1 2 1 32 11 21 2 1

x xi i i ii i ixx  ,                    (6) 
where 

1 3, , Ni i ix , Ni,  is the mean of column 1 3, , , Ni i i, Ni, N .  
In order to impute missing values, we add the 

corresponding mean value back after performing CP. 
 
3.4. Implementation and cross-validation 

 
We applied the tensor decomposition algorithm of [4-6].  
Specifically, we used the Tensor Toolbox [11] for Matlab, 
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which in turn relies on the Poblano Toolbox [12]. The 
dataset is stored as a three-dimensional sparse tensor. The 
three dimensions are respondents, questions and follow-ons 
respectively. Then we perform CP and reconstructed the 
factorized tensor. The algorithm imputes missing values 
minimizing the reconstruction error [4-6]. The column mean 
is then added back to corresponding elements.  

To gauge the generalizability of our proposed method, 
we used ρ-repeated k-fold cross-validation [12], with 10 
repetitions (ρ=10) each. It is repeated ρ=10 times for 
different proportions of missing values. For each repetition, 
the SEQOL dataset is randomly partitioned into k (=100/p) 
subsets based on proportion p of missing value. The size of 

each dataset is ( ) *
100

Nsize p . Then k-1 subsets are used as 

training set. Each training set serves as a missing at random 
(MAR) dataset with p% missing values. The remaining 
subset is used as test dataset. We apply the missing data 
methods to the training set. The estimation error is then 
calculated as the difference between the imputed value and 
the original value on the test dataset. The above procedure is 
repeated k times such that each of the k datasets is used 
exactly once as the test dataset. For each of the ρ=10 
repetitions of k-fold cross validation, the dataset is randomly 
divided into new k partitions.  

We assess the performance of the missing data methods 
by means of three statistical measures: normalized root mean 
square error (RMSE), variance, and bias. The normalized 
root mean square error (RMSE) is calculated as follows: 
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where 
1 2, , Ni i ix

Ni
 is the actual value and 

1 2, , Ni i ix
Ni

 is the imputed 
value. The range of difficulty scores is from 1 to 8, therefore 

min maxx x  is 7. Similarly bias is calculated as 
1 2

1 2 1 2

1 2

, , , ,
1 1 1

bias
N

N N
N

II I

i i i i i i
i i i

x x
N N1 2 ,1 2i i i i1 211 21 ,1 21

xi1 22
1

NIN

i i1 22
xi ix .   (8) 

All three measures are also averaged over the r=10 
repetitions. 

The variance is computed as the mean of the variance 
for each dataset in the repeated k-fold cross-validation, after 
replacing the missing values by imputed values. NRMSE, 
bias, and variance are calculated for different proportions of 
missing values.  

We calculate these measures for the standard methods 
(mean substitution, KNN, iterative local least square), and 
both our tensor decomposition methods (i.e., with and 
without normalization).  
 

4. DATASET 
 

To illustrate the proposed methods and to assess their 
performance, we consider a SLEQOL questionnaire 
(“systemic lupus erythematosus-specific quality-of-life 
instrument”) [10]. It contains the responses of hundred 
systemic lupus erythematosus (SLE) patients from hospitals 
in Singapore, China and Vietnam. Patients provided 
difficulty scores (from 1 to 8) to each of 40 questions (total 
4000 entries), which are used to determine the presence and 
burden of disease and treatment related symptoms. 
Responses were repeatedly recorded for three follow-ons. 
The dataset has only 40 missing values (0.33%), and 
therefore, it can serve as clean dataset for our experiments; it 
allows us to assess missing value methods, since the 
responses to most questions are known.  
Interestingly, the data across the repeated questionnaires are 
highly correlated. The Pearson correlation coefficient for the 
baseline with the first (second) follow-up is 0.66 (0.57), and 
for the first with the second follow-up, it is 0.72. 
 

5. RESULTS 
 

Table 1 and Figure 2 summarize our results. As there is no 
straightforward algorithm is known to determine the rank of 
a tensor (i.e. smallest number of components in CP 
decomposition of the tensor [4]), we used cross-validation to 
estimate the rank by trying different number of components 
during training. It estimates rank as 47. The proposed 
standard-CP based method significantly improves the 
imputation accuracy in terms of NRMSE compared to 
existing methods, i.e., by more than 5%. For low proportion 
(10%) of missing values, it is even up to 8.7%. If we 
normalize the columns in the tensor before applying CP, the 
improvement is more than 11% in terms of NRMSE over 
existing methods; it is even up to 15% for 10% missing 
values. Imputing missing data should not strongly affect the 
variance of the data (responses in medical questionnaires). 
Obviously, mean substitution significantly reduces the 
variances, since it replaces all missing data by the mean 
value.

 
TABLE I.  Comparison of classical methods with the proposed CP based methods. Table compares NRMSE, bias and 

variance of these methods. The variance of the original dataset is 2.05. 
         Proportion of missing data 10%  20% 30% 

Method NRMSE bias variance Standard 
deviation 

NRMSE bias variance Standard 
deviation 

NRMSE bias variance Standard 
deviation 

Mean Substitution 0.19 -0.0006 1.91 1.38 0.19 -0.0003 1.78 1.33 0.19 -0.0004 1.64 1.28 
weighted K-nearest neighbors Imputation 0.18 0.0005 1.94 1.39 0.18 0.002 1.84 1.36 0.18 0.004 1.73 1.32 
Iterative local least square 0.16 -0.056 2.01 1.42 0.17 -0.07 1.96 1.40 0.17 -0.048 1.89 1.37 
CP based method 0.15 0.140 1.97 1.40 0.16 0.18 1.89 1.37 0.16 0.18 1.79 1.34 
Column normalized CP based method 0.14 -0.024 2.00 1.41 0.15 -0.027 1.94 1.39 0.15 -0.028 1.88 1.37 
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Our proposed methods perform similarly in terms of 
variance. Another important statistical measure is the bias. 
Imputing missing data should not induce substantial biases. 
The standard-CP based method leads to a relatively large 
bias. However, normalization of the tensor columns helps to 
limit the bias, to a level comparable to standard methods. 
The bias remains more or less constant with growing 
percentage of missing data. On the other hand, not 
surprisingly, the variance decreases with the percentage of 
missing data; the more missing data to be imputed, the 
smaller the variability in the data/responses. 
 

   
 

 
 

Figure 2. Comparison of Root Mean Square Error (NRMSE; 
top) and variance (bottom) for different missing data 
techniques. The variance of the original data set equals 2.05. 
 

6. CONCLUSION  
 

We have used CP decomposition to impute missing data in 
medical questionnaires. Our numerical results indicate that 
this approach outperforms standard methods including mean 
substitution, regression imputations, and weighted k-nearest 
neighbor (KNN) estimation. By normalizing the columns of 
the tensor before CP decomposition, we can further improve 
the prediction accuracy and variance. Presently we are 
exploring alternative advanced machine learning techniques 

for imputing missing data, such as graphical models. Also, 
we are working closely together with clinicians to better 
understand which type of questions are prone to missing 
data, and for which questions our proposed methods may or 
may not apply. 
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