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ABSTRACT

This paper introduces the K-search algorithm, a method for locat-
ing an unknown number of well-separated multidimensional clusters
from sampled data in the presence of outliers. K-search finds tightly
packed point clouds, a characteristic of Gaussian data close to a
mean value, to identify potential Gaussian means. Using this search
strategy, the approximate locations of cluster means are found, auto-
matically providing an estimate for the number of clusters, K. In ex-
perimental results, K-search can effectively identify the true number
of well-separated Gaussian clusters and their locations in the pres-
ence of random background clutter (outliers). We use K-search to
identify modal driving behaviors in a real vehicle track dataset in
the presence of noisy tracks, and we compare results to other model
based clustering methods that automatically determine K.

1. INTRODUCTION

Clustering, the unsupervised process of learning structure from data,
has traditionally been a problem of associating N data points to K
clusters. Unfortunately, finding an optimal clustering for a given
dataset is often computationally intractable. Many algorithms have
been introduced to address specific clustering issues. Two of these
issues include determining the correct number of clusters and ob-
taining a good clustering in the presence of noisy data.

Center based algorithms such as K-means and Gaussian mixture
models (GMMs) are efficient and scale well for large datasets, but re-
quire initialization and therefore find local optima. Finding the cor-
rect number of clusters is difficult because objective functions that
minimize the error between clusters and the points they represent
can always be reduced by adding more clusters, and at the extreme,
errors will be zero when each point is its own cluster. The presence
of outliers further complicates these issues as model assumptions are
violated, resulting in finding incorrect clusters.

In this paper, we address both issues by finding the correct num-
ber of Gaussian or Gaussian-like clusters in the presence of non-
Gaussian outliers. We first identify local regions of large point den-
sity in order to (one) learn the number of clusters and (two) learn the
approximate location of those clusters. We then use a center based
clustering method such as K-means to converge to the locally opti-
mal clustering based on our initialization. Given the correct number
of clusters and initial cluster centers close enough to the real cluster
centers, the local optimum value found by K-means, etc., will be
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globally optimal. This approach addresses one of the biggest draw-
backs of K-means and other center based approaches (initialization),
while retaining some of the most desirable properties (scalability and
efficiency). Other model based methods that determine K are sensi-
tive to outliers that violate model assumptions. The major contribu-
tion of this paper is the introduction of K-search, an algorithm that
searches for Gaussian data in a multidimensional feature space that
includes outliers. Additionally, we provide evidence that under cer-
tain conditions, our search algorithm will locate the true Gaussian
clusters. We demonstrate that K-search can locate clusters in the
presence of outliers (data that does not belong to any clusters). This
is a significant contribution to clustering as current cluster initial-
ization methods (or cluster finding methods) use the entire dataset
to learn clusters, whereas our method is robust to the presence of
background clutter.

2. RELATED WORK

Robust clustering is a term that describes clustering methods that
are robust to the presence of noisy data or outliers. All of these
methods require selecting model parameters such as the number of
initial clusters. Khan and Ahmad proposed an algorithm for cluster
center initialization assuming K is known [1]. Their approach is
based on the experimental observation that individual features can
provide some insight into the initial cluster centers. The first step
of the algorithm is the computation of cluster centers for individual
features using the K-means algorithm. In order to combine clusters
found using individual attributes, they use centers that are far apart
while removing outliers.

Hamerly and Elkan proposed the G-means algorithm that at-
tempts to learn K and intelligently initialize clusters [2]. G-means
accepts individual clusters that follow Gaussian distribution and
splits clusters that do not using principal components analysis
(PCA). G-means runs K-means with increasing K in a hierarchical
fashion until all clusters are sufficiently Gaussian. This method does
not assume spherical clusters and works best if the true clusters are
well-separated.

Feng and Hamerly proposed an updated version of G-means,
PG-means, which is able to learn the number of clusters in a clas-
sical Gaussian mixture model (GMMs), instead of K-means [3]. To
that end, they apply a statistical test to the entire model at once, not
just on a per-cluster basis. Their method works better than G-means
for overlapping data and other scenarios where data are not Gaus-
sian. However, PG-means, like G-means, learns the positions (and
number) of clusters using all of the data contained in the dataset.
Feng and Hamerly demonstrated that PG-means produces clusters
comparable to Bayesian K-means (using Maximization-Expectation
to learn a GMM) [4] in significantly less time [3].
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Both G-means and PG-means use a principled, model based ap-
proach to locate clusters, but the model assumptions are violated by
the presence of outlying background clutter. Our clustering method
uses similar model assumptions, but the way we locate potential
clusters is robust to outliers. Instead of recursively splitting a cluster
that does not fit a particular model, we search for sets of points that
are closely clustered around a center with less point density as the
distance from the center increases, a property of Gaussian data (and
other distributions). Like PG-means, a mixture of Gaussians is as-
sumed to properly model the data and test for model fit. Performance
of K-search will be compared with that of G-means and PG-means
using pristine synthetic data, synthetic data in the presence of uni-
form outliers, and a real noisy dataset of vehicle tracks.

3. ALGORITHM

K-search locates data such as Gaussian data that is characterized
by density near a mean value. The main idea behind the algorithm
is that by discretizing the search space, it is possible to calculate
the density of points within each grid cell; cells that contain mean
values will tend to have larger point densities than neighboring cells
without mean values. As the size of each grid cell decreases, there
is more likely to be grid cells separating mean values, and therefore
grid cells that have higher point density than neighboring cells will
indicate the presence of a mean (or mode).

K-search begins with exactly one grid cell encompassing the
entire dataset. The multidimensional hyperbox is defined by a mini-
mum coordinate and a maximum coordinate that correspond to mini-
mum and maximum values in the dataset. By default, that one box is
denser than neighbors (it has no neighbors), and the resulting model
describing the data is represented by the one box. The multidimen-
sional grid cell is then split into two halves along the largest dimen-
sion of the hyperbox, and both hyperboxes are tested for density
relative to neighboring boxes (each other). The algorithm continues
to divide cells and test for density until cells have no more than 1
point (a more practical lower bound could be set in practice). Note
this hierarchical structure of grid cells is very similar to that of kd-
trees, although unlike kd-trees the grid cells are uniform in size at a
particular grid level.

In order to make this method practical for real Gaussian or
Gaussian-like data, there needs to be a selection criteria for the ap-
propriate grid size. Figure 1 shows the cell dividing method applied
to 500 points randomly drawn from two two-dimensional Gaussian
distributions. Figure 1a shows the initialization with one hyperbox,
and Figure 1b shows the grid when two means are found (shown
in Figure 1c). Figure 1d demonstrates the potential means that are
found when too fine a grid is used. Notice that once the grid level
is too fine, multiple dense boxes are found for each true cluster, an
artifact resulting from having a finite number of samples. At the
extreme, when the grid is small enough that each cell only contains
one point, several of those singleton cells would be dense compared
with neighboring cells that do not contain any points. To address
this issue, we propose a hypothesis test to determine if the points
observed within the current set of dense boxes were more likely
to have been caused by the previously accepted model (mixture of
Gaussians), or are more likely to have been caused by the new model
described by the new set of dense boxes. If small artificial dense
sets are located in a true cluster, the model including the true cluster
will have higher probability (given all of the observed data) than the
fragmented data.

(a) Initial box (one mean). (b) Grid for two means.

(c) 2 means found. (d) Too fine a grid.

Fig. 1. K-search algorithm looking for 2 Gaussian clusters.

In order to test whether the data realized at the latest grid level
are more likely to be drawn from Θ(k−1) or Θ(k) we form two hy-
potheses:

H(k−1) : D ∼ Θ(k−1), H(k) : D ∼ Θ(k).

Θ(k) is estimated by the data xi ∈ �B by first assigning each xi

to the nearest dense box using the Mahalanobis distance, and then es-
timating necessary parameters for each Gaussian from the assigned
data. All points xi in the dataset are assigned to one of the G(k)

potential Gaussian clusters (one for each dense box) at step k by
minimizing the Mahalanobis distance,

di = argmin
j

√
(xi − cj)Σ

−1
j (xi − cj)T ,

forming the partition d ∈ �B where cj ∈ �B is the centroid of
box j and Σj is a diagonal matrix with half the total width of box j
in each dimension on the corresponding diagonal (allowing for the
potential of different sized hyperboxes when inserting newly found
clusters into the previously found model). Jg is the index set such
that i ∈ Jg implies di = g.

The model used for the hypothesis test,

Θ(k) ≡ {g = 1 . . . G, q̂(k)g , μ̂(k)
g , σ̂(k)2

g },

uses estimated parameters for the mixing proportions q̂
(k)
g ∈ �, the

Gaussian mean vector μ̂
(k)
g ∈ �B , and the Gaussian standard devia-

tion σ̂
(k)
g ∈ �B . The parameters of the gth distribution are estimated

from the set of points assigned to the gth centroid cg ,

q̂(k)g =
n
(k)
g

N
, μ̂(k)

g =
1

n
(k)
g

∑

i∈J
(k)
g

xi, and

σ̂(k)
g =

√√√√ 1

n
(k)
g − 1

∑

i∈J
(k)
g

(xi − μ̂
(k)
g )2.
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Once each distribution is estimated from the assigned data, the
probability of each dense hyperbox (recall a hyperbox is the multi-

dimensional space described by a minimum coordinate min
(k)
g ∈

�B and a maximum coordinate max
(k)
g ∈ �B) can be calcu-

lated using the multivariate normal cumulative probability function,
Φ(t|μ, σ2),

π
(k)
j =

G∑
g=1

q̂(k)g [Φ(max
(k)
j |μ̂(k)

g , σ̂(k)2

g )

−Φ(min
(k)
j |μ̂(k)

g , σ̂(k)2

g )].

The sum of individual dense box probabilities is the probability of

drawing a sample in any of the dense boxes, π(k) =
G∑

g=1

π(k)
g , Using

this probability, we can calculate the probability of finding the num-
ber of samples m(k) in all of the dense boxes given that we have a to-
tal of N samples and probability π(k) using the binomial probability
distribution function Ψ(m|π,N), P (D|H(k)) = Ψ(m(k)|π(k), N),

where m(k) =
G∑

g=1

m(k)
g and m

(k)
g is the number of samples in the

gth box at the kth step.

In addition to those probabilities, there are terms in the likeli-
hood ratio test for the prior probabilities of a hypothesis, P (H(k)).
In this case, we assume a uniform distribution for the prior proba-
bility of a cluster being in any given location in our bounded mul-
tidimensional space. Therefore the prior probability is equal to the
sum of the volume of the dense boxes over the volume of the entire
bounded space (the first box):

P (H(k)) =

∑G(k)

g=1

∏B
i=1

(
max

(k)
g,i −min

(k)
g,i

)

∏B
i=1

(
max

(1)
1,i −min

(1)
1,i

) ,

where max
(k)
g,i is the ith maximum coordinate of the gth box for the

kth step (and likewise for min
(k)
g,i ).

The likelihood ratio test is

if log
P (D|H(k))

P (D|H(k−1))
> log

P (H(k−1))

P (H(k))
rejectH(k−1).

In the example shown in Figure 1 where two dense hyperboxes are
located, P (D|H(k−1)) = 1E − 14, whereas P (D|H(k)) = .04,
leading the model containing the two means to be accepted. When
the grid size is too small (Figure 1), P (D|H(k−1)) = 1E − 6 and

P (D|H(k)) = 1.6E − 5. The likelihood of the data given the new
model is not sufficiently larger than the likelihood of the data given
the old model when prior information is taken into account, resulting
in rejecting the model containing the 9 small clusters. The algorithm
K-search follows.

Algorithm K-search.
1. Initialize grid and model.

2. Divide all cells with more than 1 point, test cells for density.

3. If (new means are found)

4. Construct new model, test new model against previous model,
replace if more significant.

5. Repeat steps 2-4 until no dense cells are found.

6. Use model to initialize center based clustering algorithm such as
K-means.

4. EXPERIMENTAL RESULTS

The K-search, G-means, and PG-means algorithms were run on
randomly generated data to test the ability of each algorithm to lo-
cate the correct number of clusters. An α value of .0001 was used
for G-means and an α value of .001 was used for PG-means. Addi-
tionally, each generated partition was compared to the true partition
to evaluate the “correctness” of the clustering. This is challenging
as the number of clusters can vary (when the true number of clusters
is not recovered), and even when the number of clusters is identical,
the individual clusters might not be. An information theoretic evalu-
ation measuring how well the partitions match (agnostic of what the
labels/numbers mean) is used. A pair of information theoretic met-
rics that have similar characteristics to probability of detection and
probability of false alarm on the Receiver Operating Characteristic
(ROC) curves were developed to evaluate trackers and classification
results [5]. The information coverage score is analogous to proba-
bility of detection (truth information captured by learned partition)
and the false information ratio score is analogous to the probability
of false alarm (false information introduced by learned partition). A
composite score defined as the information coverage minus the false
information ratio is reported for experimental results, providing an
indication of overall cluster correctness.

Gaussian clusters were generated by randomly selecting means
using a uniform distribution and randomly selecting variances be-
tween one and two in each dimension (making the clusters elliptical
in shape). Overlapping clusters (separated by less than 3σ) were al-
lowed, but were discouraged by attempting to move one of the mean
values if a move was possible. Table 1 contains results of these ex-
periments.

Table 1. Experimental results on Gaussian data, IC Score is the
information coverage score minus the false information ratio score
as described in Section 4, d=dimension, IC=Information coverage
score.

Algorithm k d points clusters detected IC

K-search 5 2 1000 5±0 .99
G-means 5 2 1000 5.2±.41 .98

K-search 20 3 2000 19.75±1.55 .96
G-means 20 3 2000 20.55±1.36 .96

K-search 50 4 5000 50.7±2.15 .99
G-means 50 4 5000 51.3±1.13 .99

A second experiment was conducted with generated data where
clutter was inserted into the otherwise Gaussian data using a uniform
distribution. In addition to the specified number of Gaussian distri-
butions, an additional uniform distribution (with proportion equal to
one individual Gaussian distribution) was sampled, creating clutter
not described by any of the Gaussian distributions. Experimental
results are presented in Table 2.

Finally, we used our algorithm to identify modal driving behav-
iors on track posit output from a dataset of vehicle tracks. Each
track posit has 2-dimensional velocity and 2-dimensional acceler-
ation vector state estimates in addition to 2-dimensional position
state estimates. The goal of clustering the track posits is to iden-
tify common driving behaviors based on velocity and acceleration.
A 3-dimensional feature space was derived where the dimensions
correspond to magnitude of velocity, magnitude of acceleration, and
the angle between velocity and acceleration. An angle between ve-
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Table 2. Experimental results on Gaussian data with uniform clut-
ter, IC score is the information coverage score minus the false
information ratio score as described in Section 4, d=dimension,
IC=Information coverage score.

Algorithm k d points clusters detected IC

K-search 5 2 1000 5.6±1.39 .91
G-means 5 2 1000 10.85±2.03 .76
PG-means 5 2 1000 6±0 .94

K-search 20 3 2000 19.95±.39 1.0
G-means 20 3 2000 47±7.9 .88
PG-means 20 3 2000 22.35±1.84 .98

K-search 50 4 5000 49.9±.97 1.0
G-means 50 4 5000 114.55±7.97 .90
PG-means 50 4 5000 44.2±2.91 .95

locity and acceleration (dθ) between 0 and π indicates a turn to the
left, an angle between π and 2π indicates a turn to the right, an angle
of π is a deceleration, and an angle of 0 or 2π is an acceleration.
These features enable discrimination between directional turns and
different speeds, but does not consider heading. 10,000 track posits
were clustered, and 2,000 were randomly sampled to determine the
cluster centers using K-search. The final K-means clustering results
are shown in Figure 2 in the 3-dimensional feature space. K-search
identified 10 unique clusters. The 10 clusters all correspond to log-
ical driving behaviors such as right turns and fast moving accelera-
tors.

This clustering problem highlights the ability of K-search to
find clusters in a noisy background as the track posit feature space is
densely packed with points, but there are modal behaviors that can
be identified by K-search. The modal behaviors are left turns, right
turns, stops, slow rights, slow lefts, decelerations (no turns), fast de-
celerations, fast accelerations slightly to the right, fast accelerations
slightly to the left, and large accelerations.

Fig. 2. Track posits clustered using K-search, K=10.

Fig. 3. Example track color coded by cluster value.

Experimental results in Table 1 illustrate that for low dimen-
sional data tested in this paper, K-search on average performs as
well as G-means or slightly better (results for PG-means are not re-
ported as K-search and G-means both located the true clusters very
well). In well-conditioned data without clutter, K-search will pro-
vide good initial clusters that result in a partition that captures the
true partition. An advantage of K-search over G-means and PG-
means is that no parameters (such as the significance threshold α)
need to be set.

A more interesting feature of K-search is highlighted by results
shown in Table 2, where uniform clutter is added to the Gaussian
means. Because K-search seeks local dense point clouds in the fea-
ture space, the uniform clutter has little effect on the algorithm. The
clutter, however, greatly affects the G-means algorithm because the
location of new clusters depends on correlations in the underlying
data (the cluster splitting step in the algorithm), and the addition
of clutter affects the test used to determine if a particular cluster is
Gaussian. The presence of clutter had a smaller but still noticeable
effect on PG-means. The search mechanism and statistical test used
in K-search are less rigid and do not break down in these situations
when clutter is introduced. The IC metric indicates that K-search
not only finds the correct number of clusters (or reasonably close),
but those clusters are consistent with the true clusters.

5. CONCLUSIONS AND FUTURE WORK

This paper introduced the K-search algorithm that includes a novel
approach to searching for Gaussian (like) means in a dataset by dis-
cretizing the search space and identifying potential means. Experi-
mental results demonstrate that for low-dimensional Gaussian data,
K-search performs as well as G-means, another algorithm designed
to find separated Gaussian data, and in many cases performs slightly
better. Furthermore, when clutter is introduced, K-search is virtu-
ally unaffected, whereas G-means and PG-means are worse at de-
termining the correct number of clusters and capturing the true par-
tition. This has further implications for real-world clustering prob-
lems where the goal is to find inherent structure in data in the pres-
ence of clutter. Future work includes modifications to the algorithm
to make the approach more suitable for datasets with larger dimen-
sions (the current algorithm does not scale well for those situations)
and a local search mechanism that can modify the grid size to find
different sized clusters.
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