
DETECTING ACTIVITY-BASED COMMUNITIES USING DYNAMIC MEMBERSHIP
PROPAGATION

Scott Philips, Michael Yee, Edward Kao and Christian Anderson

MIT Lincoln Laboratory
Lexington, Massachusetts 02420 USA

{scott.philips,myee,edward.kao,christian.anderson}@ll.mit.edu

ABSTRACT
Existing literature on network community detection typically ex-
ploits the structure of static associations between entities. However,
real world network data often consists of observations of coordi-
nated interactions between members who belong to multiple com-
munities. This paper presents a novel perspective and approach for
activity-based community detection, where a community is defined
as a group of actors engaged in correlated activities over time. De-
tection is performed by propagating membership iteratively to neigh-
boring nodes through edges that represent interactions. We com-
pare the proposed approach to two state-of-the-art methods based on
modularity, and demonstrate its effectiveness on a simulated vehicle
movement dataset and the Enron email corpus.

Index Terms— Graph Theory, Community Detection

1. INTRODUCTION

Community detection remains one of the most prominent applica-
tions in the field of network inference. It finds the underlying com-
munity memberships of network entities, given the relationships and
interactions between them. There are a wide variety of such data on
communication, social, and biological networks; for example, email
traffic between employees of a company [1], vehicle traffic between
physical locations [2], collaborations between scientists [3], protein-
protein interactions [4], etc. Discovering community membership is
of practical value because it reveals group identities not readily ob-
servable and provides insight on the behaviors within and between
groups.

Typically, community detection is performed on a static graph
by identifying nodes that are more tightly connected to each other
than to the rest of the graph (i.e. homophily). However, real world
network data often challenges the assumption of homophily, as en-
tities (i.e. nodes) interact (i.e. edges) with members of different
communities over time. Under this circumstance, community detec-
tion based on static association suffers in performance. A new per-
spective of community detection based on coordinated activities is
needed. This approach should exploit interactions that correlate tem-
porally at the group level; for example, a task is carried out through
multiple meetings where actors gather at and depart from the same
location at roughly the same time. It also should exploit interactions
that correlate temporally at the individual level; for example, a per-
son typically responds to an incoming email within a short period of
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time, noted by Perry, et al. as the “reciprocation effect” [5]. This
paper demonstrates a method to detect activity-based communities
by exploiting the dynamics of the observed interactions.

The remainder of this paper is organized as follows. Section
2 describes the background literature that is closely related to the
membership propagation method. Section 3 introduces the static
membership propagation method and Section 4 extends this method
with the use of a temporal interaction kernel. Finally, Section 5
demonstrates effectiveness of the proposed approach on simulated
and real-world data sets and Section 6 concludes with summary and
future work.

2. BACKGROUND

There has been a large body of work dedicated to community de-
tection on network data. Fortunado gives a comprehensive survey
in [6]. The majority of the work focuses on global partitioning of
a static graph. Some of these approaches have been applied locally,
given a tip (i.e. starting node) into the community. Little work has
been done to utilize the dynamics of correlated interactions.

The most well-known approach is probably “modularity maxi-
mization” proposed by Newman [7]. Modularity quantifies the de-
gree to which within-community edges exceed the expected number
of edges of a random graph. Maximizing this quantity provides an
intuitive graph partition where members of a community are more
tightly connected to each other than to outside communities (i.e. ho-
mophily). Locally at each node, the modularity can be thought of as
the fraction of all edges going to members of the same community.
Indeed, Clauset proposes an approach to detect local community
from a starting node (i.e. tip node), by iteratively adding nodes to
the local community to maximize local modularity [8]. Community
detection based on the modularity can be implemented efficiently
using spectral methods [7]. Recent work by Miller et al. performs
community detection through “eigenspace analysis” on the modu-
larity matrix [9]. “Local modularity maximization” and “eigenspace
analysis” provide a baseline for performance comparison with the
method proposed in this paper.

This body of previous work points to an important intuition used
to update local membership: the hidden attribute of a given node
is updated according to an aggregate statistics from its neighbor-
ing nodes. A well-known algorithm that follows this intuition, al-
though not for community detection, is Kleinberg’s work on page
ranking [10], where the importance of a page is updated by the
normalized sum of the importance of its neighbors. Kleinberg also
shows through spectral decomposition that the iterative update will
converge. Our static membership propagation method described in
Section 3 is originally inspired by this approach.
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All of the work discussed so far does not consider dynamics
nor exploit the temporal correlation between edges. There has been
some recent emerging work in modeling network dynamics in the
statistics community. Fu et al. proposes a dynamic model [11] by
extending the mixed-membership stochastic blockmodels by Airoldi
et al. [12]. This model learns the long-term, association-based com-
munity memberships and the interactions between communities over
time. However, it does not model the dynamics of interactions that
varies at a much shorter time scale. Perry et al. proposes a point pro-
cess model to learn the dynamic processes of an email network [5].
Although his work is not on community detection, the results show
that attributes describing process dynamics play a large role in data
fitting. Ferry proposes a Bayesian filter framework to track group
memberships and dynamic processes [13]. His work offers valuable
theoretical insights but does not yet scale to practical problems.

3. STATIC MEMBERSHIP PROPAGATION

We start with the static local community detection problem, that is,
we assume that the presence and weight of each edge in the graph is
known and fixed. For example, in the case of an email contact net-
work, once an edge weight between a pair of nodes has been deter-
mined by integrating the history of emails between them, the actual
timing of the emails is ignored. We detect nodes that belong to the
community of interest by propagating community membership from
tip nodes (nodes whose community membership is known a priori)
to other nodes, along edges which represent interactions.

Inspiration for this approach comes from several sources. In
the spread of infectious disease, infectious agents are deposited at
sites and transmitted from person to person as infection propagates
throughout the graph. In social network analysis, the concept of
eigenvector centrality defines the centrality (or importance) of a node
as proportional to the sum of the centrality of its neighbors. Google’s
PageRank algorithm [14] adapts eigenvector centrality to the infor-
mation retrieval domain and posits that a webpage has high rank if
highly ranked pages link to it. Similarly, Kleinberg’s HITS algo-
rithm [10] defines hub and authority scores in a mutually recursive
way: the hub score of a page is a function of the authority scores
of the pages that link to it, and the authority of a page as a function
of the hub scores of the pages that link to it. When PageRank and
HITS are computed iteratively using power iteration to find the rele-
vant dominant eigenvectors, the quantities of interest can be viewed
as propagating along hyperlinks.

We repurpose the family of eigenvector centrality techniques to
estimate membership (instead of importance) and generalize in two
key ways. First, we incorporate existing knowledge through mem-
bership estimates for tip nodes. In this framework, one or more tip
nodes can be present, each with a fixed probability of membership
between zero and one. Second, we use a non-linear propagation
function that can vary by node type. This adds flexibility in model-
ing the propagation “physics” for a particular domain.

Let G be a graph, N be the set of nodes, and E be the set of
edges. Let Pi be the probability that node i is a member of the
community of interest. We estimate Pi using estimates from the
local neighborhood of i as follows:

Pi = α

⎛
⎝ λ

|N(i)|
∑

j∈N(i)

Pj + (1− λ) max
j∈N(i)

Pj

⎞
⎠ , (1)

where N(i) is the set of i’s neighbors, α ∈ (0, 1) is a dampening
factor, and λ ∈ [0, 1] varies the relative contributions of the mean
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Fig. 1. Notional example of the dynamic community detection prob-
lem: given membership probabilities over time on the outside red
and blue nodes as well as edge times, estimate the continuous time
varying membership probability on the center node.

and max terms in the propagation function. Note that α and λ could
depend on some attribute of node i depending on the problem do-
main.

Using a combination of mean and max can be beneficial in sit-
uations where a high degree node has a single neighbor with high
membership estimate. With only the mean term, the contribution of
this neighbor would be washed out. By including the max term, e.g.,
with λ = 0.5, the neighbor with the maximum estimate receives a

combined weight of
|N(i)|+1
2|N(i)| in Equation (1). Sensitivity to degree

is thereby reduced as this neighbor gets more than half the weight
regardless of node i’s degree.

Membership estimates for tips remain fixed throughout the al-
gorithm. Estimates for non-tip nodes are computed iteratively by
updating Pi using estimates of neighboring nodes from the previous
iteration. We stop when the estimates are mutually consistent ac-
cording to Equation (1), or in practice when the changes in estimates
from one iteration to the next are small. This is essentially a form of
fixed point iteration. Similarly to other techniques in the eigenvec-
tor centrality family, convergence is guaranteed with λ = 0. For a
general propagation function it has not been shown that the proposed
technique has a guarantee of convergence. However, in practice we
observed convergence for a wide range of λ over all datasets evalu-
ated.

4. DYNAMIC MEMBERSHIP PROPAGATION

As outlined in the previous section, membership propagation allows
the probability of a node’s community membership to be estimated
locally using only neighboring nodes. In this section we extend this
concept to allow a node’s membership probability to vary over time.
By tracking this membership over time we can determine when a
node is acting as a member of a specific community, controlling how
and when membership propagates throughout the network.

Consider a node i with M edges connecting to N neighbors.
Assume each edge connecting two nodes occur at a specific time and
that multiple edges can exist between any two nodes (i.e. M ≥ N ).
Given dynamic membership probabilities on each neighboring node
Pj(t) we wish to estimate the dynamic probability of membership on
node i. Figure 1 illustrates this problem. Membership probability on
the outer red and blue nodes are to be used to estimate the probability
on the center black node. Timing of the edges are shown by the black
stem plots.

In the scenario depicted in Figure 1, membership is propagated
by evaluating the probability of membership on the neighboring
node at the time of the edge teij and depositing that probability on
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Fig. 2. Notional result from dynamic membership propagation using
a Gaussian kernel function. The black curve is a weighted combina-
tion of the red and blue membership kernels as defined in Equation
2 and 3

the receiving node at teij . This provides a measurement of mem-
bership at a discrete set of times. In order to estimate membership
probability over all time, we must make some assumptions on the
dynamic process governing the community we wish to detect.

Equation 2 generalizes the membership propagation equation to
allow for time varying probabilities,

Pi (t) = α
( λ

|E (i) |
∑

eij∈E(i)

g (t|eij)+ (2)

(1− λ) max
eij∈E(i)

g (t|eij)
)
.

where E (i) represents the set of all edges connecting to node
i. The function g (t|eij) is an application specific interaction model
describing the effect of an edge between node i and j over all time.
This function g can naturally be divided into two terms. The first
term is a scale factor defined by the membership probability trans-
ferred from j evaluated at the time that the edge is created. The
second term is a kernel function defining how the membership prob-
ability changes for times different from the edge creation time,

g (t|eij) = Pj

(
teij

)
K

(
t− teij

)
. (3)

Naturally, the kernel function K(t) must be defined on an ap-
plication specific basis as the effect of an edge on membership may
change depending upon the process governing the community you
wish to detect. In the example of a group of collaborating colleagues,
we may expect people in the same community to be ones who attend
the same meetings at the same time. Therefore, the interaction kernel
could be a Gaussian function whose width is defined by the duration
of a typical meeting. In disease spreading applications, a person may
only be contagious 24 to 48 hours after contact with another infected
person. In this situation the desired kernel may be a shifted Gaussian
centered 24 to 48 hours after the edge.

As defined in Equation 2, the overall probability of membership
on node i is a weighted combination of all kernel functions arising
from incoming edges. This property provides a smoothly varying
function of membership that depends upon edge times as well as
the community membership kernel (as shown in Figure 2). Note
that this formulation of community membership does not necessar-
ily state that a node is a member of a community at one time and not
another, but rather provides the probability that the node is acting as
a member of that community at a given time. This is analogous to
the role indicator variable Z in mixed-membership stochastic block-
models by Airoldi et al. [12].

5. EMPIRICAL RESULTS

We evaluate membership propagation on a simulated vehicle move-
ment dataset as well as the Enron email dataset [1]. Clauset’s “lo-
cal modularity maximization” [8] and a cued version of Miller’s
“eigenspace analysis” [9] are used as baselines for performance
comparisons against the methods proposed in this paper. These two
approaches represent a diverse range of cued community detection
techniques which leverage the modularity matrix.

5.1. Data

The performances of the community detection techniques described
in this paper were determined by applying them to two network
datasets. For each dataset, a subset of the network is chosen as
the community of interest (the “foreground”) that the community
detection algorithms are tasked with distinguishing from the other
remaining nodes (the “background”).

The first dataset is a simulation of vehicle movement over a
48 hour time period in an urban environment. The simulation was
constructed by the National Geospatial-Intelligence Agency (NGA).
The nodes in this network correspond to buildings at different lo-
cations within the city, and an edge between two nodes exists if a
vehicle has traveled between the corresponding buildings. There are
approximately 4,400 nodes and over 116,000 edges in the network.
A small subset of this network corresponds to the operations of an
insurgent cell that conducts activities at 31 different nodes over the
course of the 48 hour period. For a more detailed discussion of this
dataset see [2].

The second dataset is the Enron email corpus [1], consisting
of time-stamped emails exchanged between employees at the Enron
Corporation. The entire network consists of 156 nodes and 38,390
edges, where a node corresponds to an individual employee and an
edge corresponds to an email sent from one employee to another.
The foreground community for this network was chosen to be the 25
employees that the corpus identifies as members of the Enron legal
department.

5.2. Methodology

Because methods in this paper are local (or cued) methods, perfor-
mance will inherently depend on the tip into the community of inter-
est. Depending on the location of the tip node (only one tip is used in
any experiment) performance will naturally increase or decrease de-
pending on the information contained in the tip. Therefore, detection
results are calculated independently using every possible tip into the
foreground. Results are then averaged over all possible tip locations.
Declaration of community membership is carried out by setting a
desired threshold on the membership probability. In dynamic mem-
bership propagation, that probability can vary over time. Therefore,
for the purpose of making a single declaration on each node, the
membership probability on each node is averaged over time. The in-
tuition being that nodes that spend more time on average acting as a
member of the community of interest are more likely to be members
of that community.

5.3. Detection Performance

Figure 3 shows detection performance curves for both evaluated net-
works. Results on the simulated vehicle movement graph are shown
in 3(a). The eigenspace and local modularity methods perform be-
low the static and dynamic forms of membership propagation. This
result is unsurprising, given that the former methods are designed
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Fig. 3. Community detection results on the a) Enron email graph
and b) vehicle movement graph. Plots compare community detection
performance on a variety of algorithms including eigenspace detec-
tion (magenta), local modularity maximization (green), membership
propagation (blue) and dynamic membership propagation (red).

to identify tightly connected static communities that are not exhib-
ited by the topology of the datasets under study. Static membership
propagation, on the other hand, shows detection performance above
both baseline methods. This performance increase demonstrates the
potential power of a tip node even in the absence of static struc-
ture. While methods like local modularity also use a tip node, they
force a hard decision at every iteration of the algorithm. Once a bad
decision is made, that bad decision compounds going forward. In
contrast, membership propagation passes soft probability estimates
at every iteration, postponing a decision until the end. This feature
mitigates the effect of any bad decision. Finally, dynamic mem-
bership propagation shows the best performance of all. This boost
above static membership propagation is due to its ability to utilize
the correlations between interactions over time.

Figure 3(b) shows detection performance for the Enron email
graph. This plots show similar performance to the previous results,
with dynamic membership propagation having the best detection
performance. Static membership propagation and eigenspace detec-
tion performance fall off due to their inability to leverage the dy-
namic process.

6. CONCLUSIONS AND FUTURE WORK

We present a novel perspective and approach to detect activity-based
communities by propagating membership potential between neigh-
boring nodes as they interact through time. We demonstrate its util-
ity through a local implementation for community detection given
a starting node, on two varied data sets. Performance improve-
ment of the static membership propagation over the baseline meth-
ods demonstrates its effectiveness in utilizing information of a tip
node into a community. Improvement of the dynamic membership
propagation over the static version shows the benefit of using the
temporal information of coordinated interactions.

In this paper, it was assumed that the temporal kernel function
defining the community of interest was known a priori. In the case
of the simulated datasets the kernel was defined by the known length
of within community interactions; in the case of the Enron dataset,
the kernel was defined as the inverse of the known reciprocation ef-
fect [5]. However, in many applications these community proper-
ties are not known ahead of time. In these cases, the kernel should

be defined broadly given one’s knowledge of a community and the
specifics learned from the data itself. For example, one can calculate
the average edge creation rate of the network as a whole and adjust
the width of the kernel to achieve something analogous to a constant
false alarm rate (CFAR).
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