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ABSTRACT

We propose a new method for automatically determining the
smoothness of smooth classification error count loss for the recent
Large Geometric Margin Minimum Classification Error (LGM-
MCE) training. The method uses the Parzen-estimation-based
formalization of MCE training, and it realizes the determination
through the maximum likelihood estimation of error count risk in
the one-dimensional geometric-margin-based misclassification mea-
sure. In the LGM-MCE framework, increase in the loss smoothness
directly leads to an effect of producing virtual samples, which are
expected to increase the training robustness to unseen samples. Fo-
cusing on this point, we also theoretically clarify the mechanism
of this virtual sample generation. Through experiments, the utility
of the proposed smoothness determination method is demonstrated,
and the mechanism of producing virtual samples and its effect in
robustness increase are also clearly illustrated.

Index Terms— geometric margin, Minimum Classification Er-
ror, loss smoothness, virtual samples, Parzen estimation.

1. INTRODUCTION

In Minimum Classification Error (MCE) training [1], the smooth-
ness of smooth classification error count loss plays a key role in
not only enabling the use of handy gradient-descent-based optimiza-
tion methods but also increasing the training robustness to unseen
samples. However, to increase the training robustness effectively,
an appropriate setting of the smoothness degree is required. To
this problem, a theoretically-grounded solution was proposed for the
MCE training using a conventional functional-margin (FM)-based
misclassification measure [2]. It determines the smoothness using
Parzen-kernel-based error probability estimation in the FM-based
misclassification measure space, and its utility was shown through
systematic evaluation experiments [2].

In parallel to the advent of this smoothness determination
method, a new MCE training method was developed using a
geometric-margin-based misclassification measure [3]. Geomet-
ric margin (GM) is the distance between a classification boundary
and its nearest training sample in a sample space. This new MCE
training, referred to as Large Geometric Margin Minimum Classifi-
cation Error (LGM-MCE) training, was designed to maximize GM
as well as to minimize the smooth classification error count loss. Its
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superiority to the previous MCE, i.e., Functional-Margin MCE (FM-
MCE), was also successfully demonstrated through experiments.

It is clearly worth incorporating the smoothness determination
method in the LGM-MCE method. Motivated by this concern,
in this paper, we propose a new training method that applies the
Parzen-estimation-based loss smoothness determination mechanism
to LGM-MCE training. Importantly, increase in the loss smoothness
directly leads to increase in the geometric margin, which can be
considered as an effect of producing virtual samples in a sample
space. The effect of virtual samples is found in the literature (e.g.,
[4] [5]). Therefore, it is also worth investigating this effect, aiming
to clarify the mechanism of robustness increase. In the paper, we
thus analyze this issue and theoretically clarify how loss smoothness
in the one-dimensional GM-based misclassification measure space
produces virtual training samples, which simulate future unseen
samples, in a usually high-dimensional sample space.

Through comparative experiments, the effect of the proposed
smoothness determination method is clearly demonstrated, and the
effect of producing virtual samples using loss smoothness is also ex-
cavated.

2. PARZEN-KERNEL-BASED LOSS SMOOTHNESS
DETERMINATION

2.1. LGM-MCE Formalization Based on Parzen Estimation of
Error Count Risk

First, we newly introduce a formalization of LGM-MCE using the
Parzen estimation of error count risk.

We consider the task of classifying input pattern x ∈ X as one
of the J classes (Cj ; j = 1, ..., J ), where X denotes the input pattern
sample space. As with the previous MCE framework, LGM-MCE
training adopts the following classification decision rule based on
discriminant functions:

C(x) = Ck iff k = arg max
j

gj(x; Λ), (1)

where gj(x; Λ) is the discriminant function of Cj that indicates the
degree to which x belongs to Cj . Λ denotes the trainable parameter
set of the classifier and gj(x; Λ) (j = 1, ..., J) is assumed to be
differentiable in x and Λ.

Assume here that x, which belongs to Cy , is a correctly clas-
sified training sample near the classification boundary. The LGM-
MCE training focuses on Euclidean distance r between x and the
boundary, which is the geometric margin (GM). Increasing the r
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value raises the possibility of the correct classification of easy-to-
misclassify unseen samples. Based on the result of [3], r is repre-
sented as

r ≈ −dy(x; Λ)

‖∇xdy(x; Λ)‖ , (2)

where ‖·‖ denotes the Euclidean norm and dy(x; Λ) is the following
FM-based misclassification measure defined in the previous MCE
framework:

dy(x; Λ) = −gy(x; Λ) + log

2
4 1

J − 1

X
j,j �=y

eψgj(x;Λ)

3
5

1/ψ

, (3)

where ψ > 0. That is, the GM is (approximately) equal to the sign-
reversed FM-based misclassification measure normalized by the
norm of its gradient. The LGM-MCE training then adopts the fol-
lowing new misclassification measure, Dy(x; Λ), that corresponds
to the sign-reversed GM:

Dy(x; Λ) =
dy(x; Λ)

‖∇xdy(x; Λ)‖ ≈ −r. (4)

Note that Dy(x; Λ) not only represents the GM but also shares a fea-
ture with the original FM-based misclassification measure dy(x; Λ);
the positive and negative values of Dy(x; Λ) imply misclassification
and correct classification, respectively.

Similar to the original MCE framework, the LGM-MCE method
employs the following smooth classification error count loss for in-
put x that belongs to Cy:

�y

`
Dy(x; Λ)

´
=

1

1 + exp
`−αyDy(x; Λ)

´ , (5)

where αy is a positive number. The LGM-MCE method then min-
imizes the following empirical average loss using the smooth loss
function and the finite training sample set ΩN = {(xn, yn)}N

n=1:

L(Λ) =
1

N

NX
n=1

�yn

`
Dyn(xn; Λ)

´
, (6)

where xn ∈ X is the n-th training sample and yn(= 1, ..., J) is the
class label for xn. Minimizing L(Λ) leads to the direct minimization
of the classification error counts as well as the enhancement of GM
since �y(Dy) is a monotone increasing function of Dy .

Recall that empirical average loss L(Λ) is a practical approxi-
mation to the following classification error probability over whole
pattern sample space, i.e., error count risk:

R(Λ) =

JX
y=1

P (Cy)

Z
X

1
“
Dy(x; Λ) > 0

”
p(x|Cy)dx. (7)

Note that, in the LGM-MCE formalism, this risk defined in sam-
ple space X is rewritten as the following form defined in the one-
dimensional, GM-based misclassification measure space:

R(Λ) =

JX
y=1

P (Cy)

Z ∞

0

p(z|Cy)dz, (8)

where z denotes a point in the misclassification measure space. Then
the recent MCE formalization, introduced in [6], provided a proce-
dure to estimate probability density function (pdf) p(z|Cy) using the
Parzen estimation. The resulting estimate is given as follows:

bp(z|Cy) =
1

Ny

NyX
k=1

1

hy
φ

“z − Dy(xy
k; Λ)

hy

”
, (9)

1. Initialize h(0) > 0 and let � = 0.

2. (E step) Compute the following qm,n (n = 1, ..., Ny ; m =
1, ..., Ny, �= n):

qm,n =
exp

“
− 1

2

n
zn−zm

h(�)

o2”
PNy

k �=n exp
“
− 1

2

n
zn−zk

h(�)

o2” .

3. (M step) Re-estimate h as follows:

h(�+1) =

vuut 1

Ny

NyX
n=1

NyX
m�=n

qm,n(zn − zm)2.

4. Stop the iteration if h(�+1) meets a convergence condition;
otherwise, let � ← � + 1 and go to Step 2.

5. Output hy = h(�+1).

Fig. 1. EM algorithm for ML estimation of Gaussian-type Parzen
kernel width hy in class Cy , where zn = Dy(xy

n; Λ) (n =
1, ..., Ny) and qm,n is posterior probability (responsibility).

where xy
k is the k-th training sample belonging to Cy , φ(·) is a

Parzen kernel in the misclassification measure space, and hy is its
width for Cy .

Note that each Parzen kernel generates virtual samples around
its corresponding training sample in the misclassification measure
space. Accordingly, the minimization of the following risk estimate,
which is given by replacing p(z|Cy) in (8) with bp(z|Cy), leads to
the status of Λ that approximately corresponds to minimum risk:

RN (Λ) =
1

N

JX
y=1

NyX
k=1

Z ∞

0

1

hy
φ

“z − Dy(xy
k; Λ)

hy

”
dz. (10)

Here, L(Λ) of (6) coincides with RN (Λ) of (10) when loss �y(·)
is redefined as

�y

`
Dy(xy

k; Λ)
´

=

Z ∞

0

1

hy
φ

“z − Dy(xy
k; Λ)

hy

”
dz. (11)

In addition, when using Gaussian-type Parzen kernel φ(u) =

(1/
√

2π) exp(−u2/2) and setting smoothness control parameter

αy as αy = 4/(
√

2πhy), �y(·) of (11), which reduces to the cu-
mulative Gaussian distribution function, closely resembles �y(·) of
(5) (logistic function), as described in Chapter 4 of [7]. Note the
direct link between loss smoothness αy and Parzen kernel width hy .
Thus, if Parzen estimate bp(z|Cy) accurately approximates the true
pdf p(z|Cy), RN (Λ) becomes closer to true risk R(Λ) of (8), and
empirical average loss L(Λ) also approaches R(Λ).

2.2. Parzen Kernel Width Estimation for Loss Smoothness De-
termination

A trainable parameter for Parzen estimate bp(z|Cy) is kernel width
hy . To find a desirable status of hy for a Gaussian-type kernel, a
cross-validation Maximum Likelihood (ML) method was proposed
for the FM-MCE method [2]. Its procedure is summarized in Fig.
1. The width estimation was conducted in a class-by-class mode.

To set initial value h
(0)
y , for example, the interquartile range (IQR)-

based method was applicable [8]. Finally, the loss of (5) was used
by computing αy = 4/(

√
2πhy).

To the LGM-MCE case, this cross-validation ML method is
straightforwardly applied.
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3. LOSS SMOOTHNESS EFFECT IN SAMPLE SPACE

Parzen-kernel-based formalization illustrates that loss smoothness
produces virtual samples in the misclassification measure space.
However, a mechanism has not yet been clarified to explain how
the smoothness, which is determined in the one-dimensional mis-
classification measure space, generates virtual samples in (usually
high-dimensional) sample space X . Since LGM-MCE’s misclas-
sification measure is directly related to the sample space GM, a
relationship can perhaps be excavated between the smoothness de-
termination in LGM-MCE and a mechanism that produces virtual
samples in a sample space.

Assume that xy
k is correctly classified by the classifier with pa-

rameter set Λ. Consider a set of points where the misclassification
measure value is 0, By(Λ) =

˘
x ∈ X ˛̨

Dy(x; Λ) = 0
¯
, which

is a boundary representing whether the patterns are classified as Cy .
Furthermore, let xy∗

k be a point on By(Λ) closest to xy
k (Fig. 2). xy∗

k

can be obtained by solving the following constrained minimization
problem:

minimize x ‖x − xy
k‖2

subject to Dy(x; Λ) = 0. (12)

Applying Lagrange’s method to the above problem, we get

xy∗
k − xy

k = λ∇xDy(xy∗
k ; Λ), (13)

where λ is a positive constant related to the Lagrange multiplier.
From (4) and considering dy(xy∗

k ; Λ) = 0, we get

∇xDy(xy∗
k ; Λ) =

∇xdy(xy∗
k ; Λ)

‖∇xdy(xy∗
k ; Λ)‖ . (14)

∇xDy(xy∗
k ; Λ) is a normal unit vector of By(Λ) at xy∗

k . Further-
more, noting that ‖xy∗

k −xy
k‖ is the GM for xy

k, the direction of vec-
tor ∇xDy(xy∗

k ; Λ) starting from xy
k approximately coincides with

the axis of the GM-based misclassification measure space if xy
k is

close to By(Λ). Therefore, from the viewpoint of sample space X ,

Parzen kernel (1/hy)φ
“
{z − Dy(xy

k; Λ)}/hy

”
is allocated to xy

k

along this axis (Fig. 2).
If φ is Gaussian-type, width hy plays a role of standard devia-

tion in the GM-based misclassification measure space. Note that the
GM value is common to all Cy samples placed parallel to By(Λ).
Thus, we reach a new finding. The allocation of a Parzen kernel
with width hy in the GM-based misclassification measure space re-
sults in virtual samples in the region of sample space X sandwiched
between two hypersurfaces that are 2hy apart and parallel to bound-
ary By(Λ), as illustrated in Fig. 2. Furthermore, it can also be
shown that loss slant αy in (5) directly determines, based on αy =
4/(

√
2πhy), the value of virtual-sample region 2hy in X and vice

versa.

4. EXPERIMENTAL EVALUATION

4.1. Effect of Smoothness Determination Method in LGM-MCE
Training

To evaluate the effect of Parzen-kernel-based loss smoothness de-
termination embedded in LGM-MCE training, we experimentally
compared the proposed smoothness determination and conventional
empirical smoothness search methods. We employed a fundamental
but powerful multi-prototype classifier whose discriminant function
was gj(x; Λ) = −‖x−pj‖2, where pj represented the nearest pro-
totype to x among the prototypes for Cj . Then setting ψ → ∞ in

Fig. 2. Parzen kernel and virtual sample distribution in two-
dimensional sample space. Virtual samples can exist in the shaded
band-like region.

(3), we obtained the following simple but practical misclassification
measure:

Dy(x; Λ) =
‖x − py‖2 − ‖x − pi‖2

2‖py − pi‖
, (15)

where py and pi represented the correct and best-incorrect class pro-
totypes for x, respectively.

We used the Letter Recognition Data set consisting of 20,000
English font character image samples [9]. To simulate realistic use
situations, we employed the hold-out evaluation manner by dividing
the set into a training subset of 1,000 samples, a validation subset of
1,000 samples (used for hyperparameter setting), and a testing subset
of the remaining 18,000 samples.

Figure 3 depicts the typical recognition accuracy of the proposed
method that automatically estimated αy’s and the accuracy changes
of the conventional method with the difference in αy (common to all
classes) for the testing subset. In the proposed method, since the mis-
classification measure value depends on Λ, unknown pdf p(z|Cy)
changes with the progress of the MCE training and the kernel width
should thus be repeatedly re-estimated. However, we experimentally
confirmed that recognition accuracy was almost independent of how
often the kernel width was re-estimated and therefore show the typ-
ical result for the proposed method. The figure clearly proves that
the proposed method (through automatic determination of αy) eas-
ily achieves recognition accuracy that matches the best accuracy of
the conventional method (through a burdensome search for αy).

4.2. Effect of Virtual Sample Generation through Loss Smooth-
ing

To evaluate the effect of virtual sample generation through loss
smoothing, we compared recognition accuracy between the pro-
posed LGM-MCE method with automatic loss-smoothness determi-
nation and the LGM-MCE training with the non-smooth stepwise
loss function and with an increased number of real (non-virtual)
training samples. Since the stepwise loss is not differentiable, con-
ventional gradient-descent methods are not applicable for cases of
increasing real samples. To alleviate this problem, we formalized the
line-search-based method, as summarized in Fig. 4. In the figure,
Lα(Λ) and Lβ(Λ) denote empirical average loss where class-by-
class loss slant is set to α = (α1, ..., αJ) and β = (β1, ..., βJ),
respectively. For considering virtual samples (with smooth loss), we
set both α and β to the same vector, of which element values are
obtained by the automatic loss-smoothness determination method.
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Fig. 3. Result of comparative evaluation on recognition rate be-
tween proposed smoothness determination and conventional empiri-
cal smoothness search methods.

1. Initialize Λ0, compute Lα(Λ0), and let t = 0.

2. Compute steepest descent direction dt = −∇ΛLβ(Λt).

3. Solve the following line search problem and update Λt: εt =
arg minε>0 Lα(Λt + εdt), Λt+1 = Λt + εtdt.

4. Compute Lα(Λt+1).

5. Stop the iteration if |Lα(Λt+1) − Lα(Λt)| is sufficiently
small, otherwise let t ← t + 1 and go to Step 2.

Fig. 4. Line-search-based method for both smooth and non-smooth
error count loss.

For increasing real samples (with non-smooth loss), we set α to
∞, which results in empirical average non-smooth loss. Unlike the
smooth loss case, we set another large-valued vector β in Step 2 to
compute the descent direction in the case of non-smooth loss.

Unlike the first experiment, we selected from the Letter Recog-
nition data set two data subsets: training and testing. As for the
training subset, the number of samples was fixed to 1,000 for the
virtual sample case whereas it was changed from 1,000 to 5,000 for
the real sample case. The number of testing samples was 10,000 and
was common to both cases.

Figure 5 shows typical classification accuracy of the virtual and
real sample cases for the testing subset. Comparing the testing-
subset rates for the two cases, we observed that the scores in the
virtual sample case fell within the range between 3,000 and 4,000
training samples in the real sample case; the effect of loss smoothing
was comparable to adding 2,000 or 3,000 real samples. This result
demonstrates that loss smoothness determination clearly affects the
increasing training samples through virtual sample generation.

5. CONCLUSIONS

We proposed a new classifier training method that applies an auto-
matic loss-smoothness determination method to LGM-MCE train-
ing. Through experiment evaluations, we demonstrated that the pro-
posed method easily achieved almost the same recognition accu-
racy as the best accuracy of the original LGM-MCE method that
inevitably involves an empirical and burdensome smoothness search.

Furthermore, we focused on a remarkable effect of loss smooth-

Fig. 5. Comparison of recognition rates between virtual and real
sample cases.

ing, virtual sample generation, in the LGM-MCE training and
showed the existence region of virtual samples in an input sample
space of arbitrary dimension. The comparative experiment between
the smooth loss and the non-smooth loss (with increased real sam-
ples) showed that virtual sample generation through loss smoothing
improved the training robustness, which was comparable to tripling
or quadrupling real samples when using the non-smooth loss func-
tion.

We clearly demonstrated the effect of virtual samples for train-
ing robustness using a loss-smoothness determination method and
also revealed the mechanism that produces virtual samples in a sam-
ple space, which will serve as a new basis for further study on train-
ing robustness to unseen samples.

6. REFERENCES

[1] B.-H. Juang and S. Katagiri, “Discriminative learning for mini-
mum error classification,” IEEE Trans. Signal Processing, vol.
40, no. 12, pp. 3043-3054, Dec. 1992.

[2] H. Watanabe, J. Tokuno, T. Ohashi, S. Katagiri, and M. Ohsaki,
“Minimum classification error training with automatic setting
of loss smoothness,” MLSP 2011, Sept. 2011.

[3] H. Watanabe, S. Katagiri, and M. Ohsaki, “Minimum classi-
fication error training with geometric margin enhancement for
robust pattern recognition,” MLSP 2011, Sept. 2011.

[4] Y. Lee, J. Kang, B. Kang, and K.R. Ryu, “Bayesian sampling
of virtual examples to improve classification accuracy,” ICASE
2006, pp. 1009-1014, Oct. 2006.

[5] H. Miyao and M. Maruyama “Virtual example synthesis based
on PCA for off-line handwritten character recognition,” DAS
2006, pp. 96-105, 2006.

[6] E. McDermott and S. Katagiri, “A derivation of minimum clas-
sification error from the theoretical classification risk using
Parzen estimation,” Comput. Speech Lang., vol. 18, pp. 107-
122, April 2004.

[7] C.M.Bishop, Pattern Recognition and Machine Learning,
Springer-Verlag, New York, 2006.

[8] B. W. Silverman, Density Estimation for Statistics and Data
Analysis, Chapman & Hall/CRC, 1986.

[9] http://archive.ics.uci.edu/ml/

2084


