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ABSTRACT
Multi-label classification allows a sample to belong to mul-

tiple classes simultaneously, which is often the case in real-

world applications such as audio tagging, image annotation,

video search, and text mining. In such a multi-label scenario,

taking into account correlation between multiple labels can

boost the classification accuracy. However, this in turn makes

classifier training more challenging because handling multi-

ple labels tends to induce a high-dimensional optimization

problem. In this paper, we propose a highly scalable multi-

label classifier based on a computationally efficient classifi-

cation algorithm called the least-squares probabilistic classi-

fier. Through experiments, we show the usefulness of our

proposed method.

Index Terms— Multi-Label Classification, Least-

Squares Probabilistic Classifier, Freesound, Ψ Ψ�

1. INTRODUCTION

Multi-label classification [1] is an important class of classi-

fication problems, where a single sample can belong to mul-

tiple classes at the same time. For example, in web-based

audio repositories such as the Freesound [2], each audio sig-

nal is associated with various tags such as ‘acoustic’, ‘drum’,

and ‘vocal’, and tag prediction for new sounds can be formu-

lated as a multi-label classification problem. Image annota-

tion tasks such as the PASCAL Visual Object Classes [3] also

involve multi-label classification because each image contains

various objects such as ‘airplane’, ‘sky’, and ‘person’.

A naive way to solve a multi-label problem is to take the

one-vs-rest approach, i.e., multiple binary classification prob-

lems are solved separately. However, this approach cannot

take the correlation between labels into account, and thus no

advantage of multiple labels can be enjoyed.

In order to systematically utilize the correlation between

labels, multi-task learning is useful [4]. The basic idea of

multi-task learning is, rather than solving multiple learn-

ing tasks separately, solving them simultaneously by shar-

ing some common information behind the tasks may improve
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the classification accuracy. If prediction of a single label in

multi-label classification is regarded as a task in the multi-

task formulation, multi-label classification can be systemati-

cally solved by a multi-task learning method.

A popular approach to multi-task learning is to impose

solutions of related tasks to be similar to each other, by

which related tasks implicitly share training samples effec-

tively [5, 6]. However, handling multiple tasks tends to in-

duce a high-dimensional optimization problem because mul-

tiple classifiers need to be trained at the same time.

To cope with this computational problem, a method

called the multi-task least-squares probabilistic classifier
(MT-LSPC) was proposed [7]. MT-LSPC is a multi-task ex-

tention of LSPC [8] that gives a non-parametric estimator of

the class-posterior probability analytically. A notable advan-

tage of LSPC is that its analytic solution can be computed

efficiently just by solving a system of linear equations1. MT-

LSPC effectively combines multiple LSPCs and still gives an

analytic estimator of the class-posterior probabilities that can

be computed by solving a linear system. However, naively

solving the linear system is computationally expensive in the

multi-task scenario because a large number of parameters for

multiple classifiers are involved. The key idea of MT-LSPC is

that the essential number of parameters to be optimized is re-

duced to the number of training samples, by which solutions

for multiple classifiers can be computed efficiently.

However, MT-LSPC does not scale well in multi-label

scenarios because the essential number of parameters to be

optimized is equivalent to the total number of parameters for

multiple classifiers. Furthermore, MT-LSPC assumes that all

tasks are equally similar to each other, which is not necessar-

ily true in multi-label classification. In this paper, we give

a novel extension of LSPC called multi-label LSPC (ML-

LSPC) that can overcome the limitations of MT-LSPC. Our

key idea is that the system of linear equations we need to solve

has useful block structure and we utilize this to efficiently

solve the linear system. Through experiments, we illustrate

the usefulness of the proposed approach.

1Kernel logistic regression can also be used for estimating the class-

posterior probability in a non-parametric manner. However, it involves a

non-linear optimization problem that is usually solved by a computationally

expensive method such as (quasi-)Newton methods [9, 10].
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2. PROBABILISTIC CLASSIFICATION BY LSPC

In this section, we review a probabilistic classification method

called LSPC [8].

Suppose that we are given a set of training samples

{(xn, yn)}Nn=1 drawn independently from a joint probabil-

ity distribution with density p(x, y), where xn ∈ R
D is

a feature vector, D is the dimension of feature vector x,

yn ∈ {1, . . . , Y } is a class label, and Y is the number of

classes. The objective of LSPC is to learn the class-posterior

probability p(y|x) from the training samples. Based on the

class-posterior probability, classification of a new sample x
can be carried out by argmax y∈{1,...,Y } p(y|x), with confi-

dence p(y|x).
For each y ∈ {1, . . . , Y }, p(y|x) is modeled by

q(y|x;θy) :=

N∑
n=1

θy,nK(x,xn),

where θy ∈ R
N is the parameter vector and K(x,x′) is a

kernel basis function. The model is fitted to the true class-

posterior probability under the squared loss:

Jy(θy) :=
1

2

∫
(q(y|x;θy)− p(y|x))2 p(x)dx,

where p(x) denotes the marginal density of feature vector x.

Expanding the squared term, we can express Jy as

Jy(θy) =
1

2

∫
q(y|x;θy)2p(x)dx

−
∫

q(y|x;θy)p(x|y)p(y)dx+ C,

where p(y|x) = p(x|y)p(y)/p(x) is used and C is a constant

independent of θy .

Approximating the expectations over x and the class-prior

probability p(y) by samples, ignoring C, and including an �2-

regularizer, we have the following training criterion:

Ĵy(θy) :=
1

2N

N∑
n=1

q(y|xn;θy)
2

− 1

N

∑
n:yn=y

q(y|xn;θy) +
λ

2
‖θy‖2

=
1

2N
θ�
y K

2θy − 1

N
θ�
y Kξy +

λ

2
‖θy‖2,

where λ > 0 is the regularization parameter, and K is the

N ×N matrix and ξy is the N -dimensional vector defined by

Kn,n′ := K(xn,xn′), ξy,n :=

{
1 (yn = y),

0 (yn �= y).

Taking the derivative of Ĵy with respect to θy and setting

it to zero, we can obtain the minimizer θ̂y analytically as

θ̂y =
(
K2 + λNIN

)−1
Kξy,

where IN denotes the N -dimensional identity matrix. By

rounding up a negative output to zero and normalization, the

final solution is given as

p̂(y|x) = max(0, q(y|x; θ̂y))∑Y
y′=1 max(0, q(y′|x; θ̂y′))

.

This method is called the least-squares probabilistic classifier
(LSPC) [8].

Thanks to the above analytic-form solution, LSPC was

demonstrated to be computationally much more efficient than

kernel logistic regression [9, 10] (trained by the L-BFGS

quasi-Newton method), whereas the classification accuracy is

kept comparable [8].

3. MULTI-TASK CLASSIFICATION BY LSPC

By combining multiple LSPCs, a computationally efficient

multi-task learning method can be developed. In this section,

we review multi-task LSPC (MT-LSPC) [7].

Suppose that we are given a set of training samples

{(xn, yn, tn)}Nn=1, where tn ∈ {1, . . . , T} denotes the task

index. We assume that {(xn, yn)}Nn=1 are drawn inde-

pendently from a joint probability distribution with density

ptn(x, y). The objective of MT-LSPC is to learn the class-

posterior probabilities pt(y|x) for t ∈ {1, . . . , T}.

The idea of MT-LSPC follows the line of [5], i.e., solu-

tions of all tasks are imposed to be close to each other in terms

of the �2-norm. More specifically, for each t ∈ {1, . . . , T}
and y ∈ {1, . . . , Y }, pt(y|x) is modeled as

q(y|x;θt,y) :=
N∑

n=1

θt,y,nK(x,xn).

Then the simultaneous training criterion for all models

{q(y|x;θt,y)}Tt=1 is given by

ĴMT
y (θy) :=

1

2N

N∑
n=1

q(y|xn;θtn,y)
2

− 1

N

∑
n:yn=y

q(y|xn;θtn,y) +
λ

2T

T∑
t=1

‖θt,y‖2

+
γ

4T 2

T∑
t,t′=1

‖θt,y − θt′,y‖2,

where θy = (θ�
1,y, . . . ,θ

�
T,y)

� ∈ R
NT , and γ > 0 is the

multi-task parameter. Taking the derivative of ĴMT
y with re-

spect to θy and setting it to zero, we have equation Aθy = by
(the definition of A and by are omitted; see [7] for details).

In principle, equation Aθy = by can be solved analyti-

cally as θy = A−1by. However, this requires O(N3T 3) time,

which is prohibitive for large N and T . On the other hand,
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through the dual formulation, the essential number of param-

eters was shown to be N , because only N training samples

are available [7]. Taking this into account, we can reduce the

size of the matrix to be inverted from NT ×NT to N ×N .

By that, the MT-LSPC solution can be computed in O(N3)
time, which is independent of T (see [7] for details).

4. PROPOSED METHOD: MULTI-LABEL LSPC

In this section, we describe our proposed method called multi-
label LSPC (ML-LSPC).

Let us consider the following multi-label problem.

Suppose that we are given a set of training samples

{(xn,yn)}Nn=1, where yn ∈ {1, . . . , Y }T is a class-label

vector and T is the dimension of class-label vector y. x is as-

sumed to be drawn independently from p(x), and the t-th el-

ement yt of y = (y1, . . . , yT )
� is assumed to be drawn from

pt(y|x). The objective of ML-LSPC is to learn the class-

posterior probabilities pt(y|x) for t ∈ {1, . . . , T}.

A notable difference between the multi-task and multi-

label formulations is that the number of training samples is

N in the multi-task formulation (see Sec. 3), whereas the

essential number of training samples in the multi-label for-

mulation is NT . Thus, if we naively apply MT-LSPC to

the multi-label problem, the computational complexity is still

O(N3T 3). Furthermore, the assumption behind MT-LSPC

that all tasks are equally similar to each other is not nec-

essarily appropriate in multi-label classification. Below, we

describe a new method that can overcome the limitations of

MT-LSPC.

Our basic idea for multi-label learning follows the same

line as [6], i.e., similar labels should have similar solutions.

Let Wt,t′ ≥ 0 be a similarity between label yt and yt′ (we

assume Wt,t′ = Wt′,t); large Wt,t′ means that yt and yt′ are

similar. Then our training criterion is defined as follows.

ĴML
y (θy) :=

1

T

T∑
t=1

(
1

2N

N∑
n=1

q(y|xn;θt,y)
2

− 1

N

∑
n:yt,n=y

q(y|xn;θt,y) +
λ

2
‖θt,y‖2

)

+
γ

4T 2

T∑
t,t′=1

Wt,t′‖θt,y − θt′,y‖2.

After a few lines of calculation, we can show that ĴML
y is

compactly expressed as

ĴML
y (θy) =

1

2
θ�
y Hθy − θ�

y hy,

where H = 1
NT IN ⊗ K2 + λ

T INT + γ
T L ⊗ IN ,

⊗ denotes the Kronecker product, L = D − W ,

D is the T -dimensional diagonal matrix with diago-

nal elements
∑T

t=1 W1,t, . . . ,
∑T

t=1 WT,t, and hy =

1
NT ((Kξ1,y)

�, . . . , (KξT,y)
�)�. Taking the derivative of

ĴML
y with respect to θy and setting it to zero, we obtain

Hθy = hy. (1)

Directly solving Eq.(1) takes O(N3T 3) time, which is

prohibitive when N and T are large. Here, we take into ac-

count the block structure of H , and propose to solve the equa-

tion numerically by the conjugate gradient method. Specifi-

cally, we can compute the matrix-vector product Hθy as

Hθy =

⎛⎜⎝
1

NT K
2θ1,y +

λ
T θ1,y +

γ
T

∑T
t=1 L1,tθt,y

...
1

NT K
2θT,y +

λ
T θT,y +

γ
T

∑T
t=1 LT,tθt,y

⎞⎟⎠ .

This takes only O(NT (N + T )) time, whereas naive com-

putation of Hθy takes O(N3 + N2T 2) time including the

computation of K2. As will be shown in the next section, this

significantly contributes to reducing the computation time.

5. EXPERIMENTS

In this section, we first experimentally illustrate the behavior

of the proposed ML-LSPC using an artificial data set, and

then apply ML-LSPC to a real-world audio tagging task.

Illustrative Example: Let the feature dimension be D =
20, and we consider T binary classification tasks. Train-

ing samples of the t-th task is created as follows: xn =
(x1,n, . . . , xD,n)

� is independently drawn from the standard

normal distribution and yt,n is determined by linear decision

boundary cos(2πt/T )x1,n + sin(2πt/T )x2,n (i.e., the deci-

sion boundaries are rotated in the subspace spanned by the

first two dimensions). We set the number of training samples

to N = 300 and the number of test samples to N = 1, 000.

The label similarity Wt,t′ is set to max(0, ρt,t′), where ρt,t′
is the Pearson correlation coefficient between {yt,n}Nn=1 and

{yt′,n}Nn=1. We use the Gaussian kernel as K(x,x′), and de-

termine all tuning parameters (i.e., the Gaussian width, the

regularization parameter λ, and the multi-task parameter γ)

by 5-fold cross-validation in terms of the misclassification

rate. We run the experiments 50 times with different ran-

dom seeds, and evaluate the average misclassification rate and

computation time as functions of the number of tasks.

The left graph in Fig. 1 plots the misclassification rate

of plain LSPC (i.e., each task is solved separately) and ML-

LSPC, showing that the classification performance tends to

be enhanced as the number of tasks increases. The right

graph in Fig. 1 plots the computation time of ML-LSPC when

Eq.(1) is naively solved (we used the left-division function

‘mldivide’ in MATLAB R©) or when the proposed optimiza-

tion method is used (we used the conjugate gradient function

‘pcg’ in MATLAB R©). This shows that the proposed opti-

mization method is computationally much more efficient than

the naive implementation.
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Fig. 1. Illustrative example. Misclassification rate (left) and computation

time (right) as functions of the number of tasks.
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Fig. 2. Precision-recall curves for

Freesound tagging task.

Audio Tagging: The Freesound Project is a collaborative

database of Creative Commons licensed sounds [2]. Each

sound file was annotated using a vocabulary about the genre,

instrumentation, emotion, style, and rhythm. We downloaded

1, 276 audio files from the Freesound web page, and extracted

the first 13 mel-frequency cepstral coefficients (MFCCs) [11]

and their first and second instantaneous derivatives computed

in a half-overlapping sliding window with width 23[msec].

Thus, each audio file was expressed as a set of 39-dimensional

feature vectors. We then created a vector quantization code-

book of size D = 2, 048 using about 600, 000 feature vectors

obtained from all the 1, 276 audio files, and extracted the nor-

malized code histogram as x.

For experiments, we picked 361 samples from the 1, 276
samples that contain the pre-specified 15 tags such as ‘noise’,

‘percussion’, ‘drum’, and ‘rhythmic’. Then, we randomly

chose N = 20 samples for training, and used the remaining

341 samples for performance evaluation. Because the pres-

ence and absence of tags were highly imbalanced, we decided

to evaluate the performance by the F-measure (we also used

the F-measure for cross-validation).

Fig. 2 depicts the precision-recall curves and the F-

measures for plain LSPC and ML-LSPC, showing that ML-

LSPC overall compares favorably with plain LSPC.

6. CONCLUSIONS

Multi-label classification is useful in various real-world prob-

lems such as audio tagging, image annotation, video search,

and text mining. However, because the essential number of

training samples for T -dimensional label vectors of size N
is NT , naive implementation of multi-label classification is

computationally expensive when N and T are large. To over-

come this computational bottleneck, we proposed to combine

a computationally efficient classifier called LSPC [8] with a

standard multi-task learning technique [6]. Our key idea was

that the system of linear equations we need to solve has useful

block structure, and we utilized that structure to improve the

computational efficiency. Through experiments, we showed

that the proposed method, ML-LSPC, is promising.
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