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ABSTRACT 
We propose a novel flexible and hierarchical object representation 
using heterogeneous feature descriptors for detection of visual 
objects in real-world scenarios. Our representation is built on a 
Conditional Random Field (CRF) model that is able to aggregate 
local, semi-local and global features in one consistent framework. 
To improve the discriminative power of our model, we incorporate 
SVM classifiers into the CRF to learn discriminative unary 
classifiers for different object parts. Besides parameter learning of 
unary classifiers, a topology learning that captures the underlying 
geometrical structure of the target object class also boosts the 
performance of our model. Evaluation results on both simple 
UIUC single-scale car dataset and the challenging PASCAL VOC 
2007 dataset verify that our model is flexible enough for a wide 
variety of object classes and robust to appearance variations 
caused by pose changes, articulation and partial occlusion. 

      Index Terms— Object detection, Conditional random field, 
Hierarchical representation. 

1. INTRODUCTION  
Visual object detection and categorical object classification is one 
of the primary yet sophisticated topics in computer vision and 
pattern recognition communities. Although much progress [1-11] 
has been made recently, it is still far from been well established for 
practical applications. Object detection is challenging because 
objects from the same class can vary significantly in appearance 
and shape. Variations arise not only from changes in illumination 
and viewpoint, but also due to articulation and intra-class 
variability in shape and other visual properties. In addition, object 
detection is a highly imbalanced classification task, which means 
that a typical natural image may contain many more negative 
background patterns than object patterns.  

Recent developments have shown the effectiveness of using 
different feature types and hierarchical feature representations in 
the context of object detection and categorization. Zhang et al. [1] 
fused local texture features represented by PCA-SIFT and global 
shape context descriptors within a single multi-layer Adaboost 
model for object class recognition. Shotton et al. [2] introduced a 
method of fusing contour and texture information for categorical 
object detection. Combining advantages of shape and appearance 
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features, we [3] proposed an effective approach for object 
categorization and detection, in which we built a generic shape 
codebook extracted from a set of pair adjacent segments and a 
class-specific appearance codebook selected from a pool of 
heterogeneous local descriptors. Since different kinds of feature 
descriptors provide complementary views of image data and 
increase the interpretability of object representation, all these 
works show a performance enhancement after combination of 
heterogeneous features. On the other hand, hierarchical feature 
representations [4-6] are a powerful paradigm for object detection. 
Usually, hierarchical representation presents informative views of 
object data at different scale levels, so it derives a flexible structure 
for capturing appearance, articulation and viewpoint changes. 
Consequently, extracting heterogeneous feature descriptors and 
organizing them in a hierarchical structure expect to improve the 
detection and classification performance. 

Modeling and learning object representation is crucial in any 
object detection and classification system, be it human or 
computer. To date, several powerful machine learning and data 
mining models have been proposed, which makes the exploitation 
of huge feature data and complex spatial layout become practical. 
Boosting techniques encode objects’ appearance codebook by 
selecting them from a large number of local features within the 
sample window. The relative positions of these local features 
represent the shape implicitly. Constellation and star model 
organize local parts and estimate their joint appearance-spatial 
distribution. These probabilistic part-based models have shown 
good performance on several benchmark datasets. However, the 
complexity of the combined estimation step restricts them to a 
relatively small number of parts and both models usually assume a 
fixed object parts so that the solution space is highly restricted. 
More recently, some complex models like Conditional Random 
Field (CRF) [4-8], and Latent SVM are proposed. As latent models 
allow to incorporate discriminative classifiers into a generative 
model, they facilitate modeling object categories with more 
deformable and interpretable structures.  Liu et al. [7] established a 
CRF to learn and combine three kinds of features for still and 
dynamic salient object detection. Schnitzspan et al. [8] assembled 
an object based on a flexible ensemble of parts whose labels were 
treated as hidden nodes in a latent CRF. With the help of this latent 
CRF model, their method enables the automatic discovery of 
semantically meaningful object part representations. While 
Felzenszwalb et al. [9] tackled partially labeled training data using 
a similar model. They combined a margin-sensitive method for 
mining hard negative examples with a latent variable formulation 
called latent SVM which led to an iterative training algorithm that 
alternates between fixing latent values for positive examples and 
optimizing the latent SVM objective function. Regarding these 
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unlabelled parts as latent variables in object model, the resulting 
object detection system is formulated as mixtures of flexible part 
models. 

Considering the strength of hierarchical and heterogeneous 
feature representation, as well as the flexible part-based object 
model, in this paper, we propose a novel object class detection 
approach that incorporates the aforementioned modules into a 
consistent CRF framework. In particular, we extract a set of 
complementary feature descriptors under different grid sizes to 
represent a generic object class in local, semi-local and global 
sense with a hierarchical and multi-feature manner. The 
arrangement of object parts is characterized and learned with a 
graphical-like CRF model, where each node (unary potential) 
associates with detected hierarchical features and edge (pairwise 
potential) defines the connection between two arbitrary nodes. 
With this flexible CRF-based object model, our approach is able to 
provide robustness to articulations and missing features caused by 
partial occlusion or pose changes.  Evaluations on the two 
benchmark datasets demonstrate the effectiveness of our model. 

2. MODEL FORMULATION 
Given an image I, we formulate object detection as a binary 
classification problem, i.e. for I, a binary label L {1,-1} indicate 
whether a particular class of objects contain in the image. 
Motivated by the recent success of CRF in categorization and 
verification tasks, we also model this problem using a pairwise 
graph structure-based CRF [4-8] that estimates the posterior 
probability P(L|I). In particular, each node n V in the graph 
G(V,E) represents a binary part label ln {1,-1} encoding the 
presence of an object part from the target class (ln =1) or a 
background patch (ln =-1). The set of active edges E connecting the 
nodes defines the interaction between pairwise nodes and edge 
structure of the underlying CRF. To facilitate the classification of 
object parts from image features, our model integrates 
discriminative SVM classifiers into generative CRF framework. In 
addition, a topology learning that explores the inherent geometrical 
relationship and parts structure for object class also contributes to 
the high performance of our system. 

2.1. CRF-based object model 
Since in object detection we are interested in the probability of 
presence or absence of particular objects, the posterior distribution 
can be modeled as 
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where ={ , w, e} parameterizes the CRF model, Z( ) is a 
normalization function, un and vmn denote the unary and pairwise 
(edge) potentials. Specifically,  and w are parameters of unary 
potentials, whereas, e is parameter of pairwise potentials. 

In our model, unary potentials collect local, semi-local and 
global evidence. Evidence of each un corresponds to a specific 
feature descriptor fn (I). As shown in Fig.1, we describe an image 
with a hierarchical structure, where unary potentials at bottom 
level extract local features and potentials at intermediate levels 
attain semi-local features in a larger region until a global 
representation of the object is aggregated at the top level. Similar 
to [8], we define the unary potential of node n using a softmax 
function based on a weighted combination of the response of a 
group of M hybrid feature classifiers F( n,fn(I))=[F( n,1, fn(I)), …, 

F( , f(I))=FH( , f(I))+FC( , f(I))+FB( , f(I))hybrid block classifier
unary node classifier F( , f(I))=[F( 1, f(I)),...,F( M, f(I))]T
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Fig.1. Framework of our CRF-based hierarchical object model 

F( n,M, fn(I))]T, where wn are the weight vector, and n are the 
parameters of classifiers. 
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Pairwise potentials extract the topology of objects as they model 
the connection between node pair (m, n). Considering the 
interaction of image features fm(I) and fn(I), we define the pairwise 
potentials based on a similar softmax function on concatenated 
unary features 
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For each possible edge (m,n) and each combination of labels 
(a,b) {-1,1}, we use a particular classification vector mn

abe , which 
allow us to model spatial dependencies and layouts of different 
feature types. 

It is worth noting that by independently classifying nodes 
based on corresponding unary potentials and jointly encoding 
dependencies among neighboring nodes according to pairwise 
potentials, our model is capable of providing a discriminative 
multiscale and complementary view on objects and simultaneously 
capturing the underlying topology of objects. This is the difference 
between our model and previous works. 

2.2. Hierarchical and heterogeneous feature 
representation 

Three types of heterogeneous feature descriptors like Histograms 
of Oriented Gradients (HOG) [10], Center-Symmetric Local 
Binary Pattern (CS-LBP) [11], and Binary Coherent Edge 
descriptors (BiCE) [12] are used to describe the contents in an 
image cell. In particular, HOG and CS-LBP are gradient 
orientations-based and texture-based descriptors, respectively, 
whereas BiCE is edge-based descriptor which encodes the 
presence or absence of edges using a binary value for a range of 
possible edge positions and orientations. These heterogeneous 
descriptors represent an image patch from different aspects, thus 
providing a complementary view of objects.  

For each kind of descriptor, to compute a hierarchical feature 
representation, at the bottom level, we segment the whole image 
into a dense grid of non-overlapping i×i pixel cells and concatenate 
neighboring j×j cells to one block.  For higher levels, we 
successively double the size of blocks in horizontal and vertical 
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directions until on the highest level. By calculating the 
corresponding descriptors at each block and concatenating several 
adjacent blocks to form feature descriptors at different levels, we 
attain a hierarchical representation that consists of the local, semi-
local and global features for the target object. Following the 
construction in [10-12], for HOG and CS-LBP, (i, j) is set to (8,2) 
and (4,1), respectively, whereas, for BiCE, i is set to 8 and j is set 
to 3. Finally, to remove background noise and statistical 
redundancy in the feature space, we apply PCA on each kind of 
feature descriptor which result in the final 11-dimensional PCA-
HOG, 60-dimensional PCA-CS-LBP (we use CS-LBP2,8,0.01 in this 
paper) and 256-dimensional PCA- BiCE descriptor per block.  

We train a discriminative 2 kernel SVM classifier for each 
kind of descriptor per block, and aggregate three descriptor-
specific SVM classifiers(FH( , f(I)), FC( , f(I)) and FB( , f(I)) 
denote PCA-HOG, PCA-CS-LBP and PCA- BiCE SVM classifier, 
respectively) into one hybrid block SVM classifier F( , f(I)). To 
simplify the complexity of our representation, we merge several 
neighboring blocks into a unary node according to the number of 
scale levels in the hierarchical model. For each unary node n, the 
final unary SVM classifier F( n, fn(I)) is formulated as the 
concatenation of the hybrid block SVM classifiers in that node, i.e. 
F( n, fn(I)) = [F( n,1, fn(I)),…,F( n,M, fn(I))]T. 

3. MODEL LEARNING 

As discussed in sec.2.1, the parameter set ={ , w, e} in our model 
consists of parameters  and w of unary potentials, as well as 
parameters e of pairwise potentials. Given K training images 
I={I1,…,IK} annotated with bounding boxes and their labels 
L={L1,…,LK}, the goal of model learning is to optimize the 
parameter set  and decide a suitable graph structure representing 
the underlying geometrical topology of the object class. 

3.1. Parameter learning 
Like maximum likelihood training used in most CRF model [4-7], 
we optimize parameters such that a conditional log-likelihood 

1
( ) log ( | ; ) ( )K k k

k
P L I P is maximized, where P( ) = 

P(w)·P(e) is a regularizer that avoids overfitting.  
The training of parameter  for SVM classifiers is facilitated 

by the primal SVM training proposed in [13] which showed 
competitive results compared with quadratic programming in the 
dual form. We follow this idea and embed primal SVM training in 
the CRF model. Other parameters can be optimized via gradient 
ascent. In particular, assuming P(w)~ (0,1) and P(e)~exp(- e ), 
differentiating ( ) w.r.t. w gives 
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where ( | )[ ]P IE L is expectation under empirical distribution of 

training data, and ( | )[ ]PE L I is the expectation under the posterior 

probability of our model. Similarly, taking partial derivatives of 
( ) w.r.t. e gives 
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To evaluate Eq.(4) and (5), it is required to compute the 
marginal distributions P(ln|I) and P(lm, ln|I). Since these marginals 
do not have closed-form solution, we approximate them using 
loopy belief propagation. 

3.2. Topology learning 
Previous results [8, 14-15] show that learning a suitable 
geometrical topology greatly improves the classifier’s performance 
for deformable and articulated objects. To this end, we also 
proposed to boost the flexibility of our model by learning parts 
structure and object topology. The intuition behind is to find a set 
of edges E={(m*,n*)} with the largest log-likelihood gradient 
logP(l=1|I; )/ em*n*, since theses edges best improve the 

discrepancy between object (l=1) and background (l=-1). 
Concretely, we iteratively search edges (m*,n*) that maximize the 
log-likelihood ratio as shown in Eq.(6), and add them to an 
initially empty set E from all possible edges (m,n) V×V-E  
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After each iteration, we also remove those edges with absolute 
weight below a threshold 1 or with an absolute gradient norm 
below a threshold 2. 

4. EVALUATION RESULTS 
For the detection task, we evaluated our model on UIUC multi-
scale car dataset [14]. For this dataset, we trained our model on 
300 bounding boxes containing positive examples and 250 
negative examples, randomly selected from training set. To 
evaluate the detection performance, we follow the detection 
procedure and evaluation protocol in [14] (see Eq.(2) in [14]). We 
compare equal error rate (EER) with several other works [3, 14-
15]. In particular, 2AS-SVM [3] is our previous model which 
combines generic shape codebook with class-specific appearance 
codebook, and others are state-of-the-art methods. Fig. 2 plots the 
precision-recall curves for all methods. As shown that our CRF-
based model achieves competitive result with EER = 95.54% 
compared to other well performing methods. Although, thanks to 
the combination of shape and appearance features, the old 2AS-
SVM model by itself performs already quite well on this dataset 
(with EER = 91.31%), our new model still improves the average 
precision performance by 5.87%. 

To further show the robustness of our model to appearance 
and shape deformation due to scale and pose changes as well as 
partial occlusion and articulation, we also provide results on more 
difficult PASCAL VOC 2007 challenge dataset [16] which has 20 
object classes. We follow the PASCAL challenge protocol and 
report the average precision (AP). We compared our complete 
model (hierar + hetereo) with hierarchical and heterogeneous 
feature representation to the model relying only on hierarchical 
HOG descriptors (hHOG), or using only single-scale (the finest 
scale) heterogeneous features (hetereo), and other benchmark 
works. We summarize AP results on all 20 classes in PASCAL 
VOC 2007 dataset in Table 1. Compared with other works, our 
complete model achieves the best result on 14 of 20 listed classes. 
The average AP performance of complete model outperforms that 
of Felzenszwalb et al. [9] and Schnitzspan et al. [8] algorithm by 
5.89% and 7.26%, respectively. Moreover, using hierarchical and 
heterogeneous feature descriptors improves the AP performance of 
using only single-scale heterogeneous descriptors and using only 
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Table 1. Comparison of AP (%) on 20 classes in PASCAL VOC 2007 dataset 
Class aero bike bird boat bottle bus car cat chair cow 

hierar+hetereo 35.4 57.2 9.7 15.3 27.4 45.7 49.0 24.8 15.9 20.5 
hHOG 33.5 57.0 7.6 14.8 26.8 45.1 47.5 23.7 13.0 20.2 
hetereo 32.3 56.6 4.4 13.1 26.6 43.9 47.0 23.1 10.6 20.8 

Felzenszwalb et al.[9] 32.8 56.8 2.5 16.8 28.5 39.7 51.6 21.3 17.9 18.5 
Schnitzspan et al. [8] 31.9 57.0 9.1 15.2 26.0 42.7 49.3 14.5 15.2 18.5 

table dog horse mbike person plant sheep sofa train tv 
hierar+hetereo 24.3 12.6 49.5 43.0 36.2 14.9 21.6 26.2 41.4 45.5 

hHOG 23.5 11.8 47.9 41.3 35.8 13.7 19.9 25.9 39.3 42.4 
hetereo 23.2 11.6 47.1 40.9 35.6 13.2 20.4 24.5 39.5 43.6 

Felzenszwalb et al.[9] 25.9 8.8 49.2 41.2 36.8 14.6 16.2 24.4 39.2 39.1 
Schnitzspan et al. [8] 24.2 11.8 49.1 41.9 35.7 14.5 18.9 23.3 34.3 41.3 

                      
     Fig.2. Precision-Recall curves for UIUC multi-scale dataset              Fig.3. Some detection examples on PASCAL VOC 2007 dataset 

hierarchical HOG by 6.41% and 4.30%, respectively. Thereby, 
simultaneously including multiscale and complementary feature 
descriptors helps our framework to model a variety of complex 
object classes and also improves the detection performance. Fig. 
3 shows some examples resulted from our detector. 

5. CONCLUSION  

In this paper, we propose a novel flexible part-based model to 
detect and classify visual object class in real-world scenarios. 
To conclude, our contribution includes 1). represent object 
classes using hierarchical and heterogonous features and model 
object representation with a consistent CRF framework. 2) in 
addition to the discriminative parameter learning, the proposed 
topology learning that captures implicit geometrical structure of 
object classes further helps to improve the performance of our 
model. Evaluation results on simple UIUC single-scale car 
dataset and the challenging PASCAL VOC 2007 dataset both 
verify the advantage of our new model compared with other 
state-of-the-art works. 
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