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ABSTRACT

Improving learning and classification efficiency has be-
come increasingly important for machine learning. If the
traditional RBF kernel is adopted, the learned kernel-
based classifier usually delivers better performance by
engaging a large training dataset. However, such a high
performance comes at the expense of costly learning and
classification complexities, which grow drastically with
the training size N . To overcome this curse of dimen-
sionality, we propose a so-called TRBF kernel(with finite
intrinsic degree J) which approximates the RBF kernel.
The contributions of this paper are as follows. First, the
optimal classification efficiency attainable is shown to be
J ′ ≈ J . To improve learning efficiency, we propose a fast
PDA algorithm with learning complexity linearly growing
with N . We adopt pruned-PDA (PPDA) to improve the ac-
curacy by removing harmful “anti-support” vectors from
the training set. Experiments on ECG dataset showed
that TRBF-PPDA delivers nearly optimal performance
with very low power.

Index Terms— SVM, PDA, PPDA, anti-support vec-
tors, intrinsic degree of kernels, learning efficiency, classi-
fication efficiency, low-power on-line ECG detection

1. INTRODUCTION

An overall machine learning system includes two phases,

learning phase and prediction phase, as depicted in Figure 1.

In most literatures in kernel-based machine learning, perfor-

mance or prediction accuracy has always been the primary

concern. This paper, however, places a main focus on the

computational efficiency from two aspects: (1) learning effi-

ciency and (2) on-line classification.

The Gaussian RBF kernel, being one of the most popu-

lar and effective kernels adopted, suffers from the so-called

the curse of dimensionality that its learning and classification

complexities grow drastically with the training size N .

This renders the RBF kernel unsuitable when computing

cost is a concern, thus a substitute kernel is needed to provide

a proper balance between the performance and complexity.

We shall demonstrate that the complexities are closely depen-

dent on (1) the kernel selection, (2) the choice of classifiers,

and (3) the size of training dataset. Moreover, the very same

(a)

(b)

Fig. 1. (a) In the learning phase, the training data (with known

class labels) are used to train a desired classifier. (b) In the

prediction/detection phase, the class of a test signal is pre-

dicted by the trained classifier.
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Fig. 2. This two-layer network shows how any vector x can

be mapped to a new representative vector in its intrinsic space.

factors will also play a pivotal role in the prediction accuracy.

Given a finite-decomposable kernel:

K(x,x′) =
J∑

j=1

φ(j)(x)φ(j)(x′),

where the intrinsic degree J represents the number of in-
dependent basis functions in the associated intrinsic space,
which offers a new representation layer exemplified by Figure
2. For example, a p-th order polynomial kernel (abbreviated

as POLY p) is K(x,x′) =
(
1 + x·x′

σ2

)p

. Denote x(M+1) =
1, barring a scaling factor, each basis function has a appear-
ance as follows:

(
x(1)

)d1 · · ·
(
x(M)

)dM
(
x(M+1)

)dM+1
, with

M+1∑
m=1

dm = p.
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There are J = J (p) = (M+p)!
M ! p! different such combinations.

It is our finding that the intrinsic degree dictates the learn-

ing/classification complexities and prediction performance.

In other words, a kernel can be quantitatively and qualitatively

characterized by its intrinsic degree J .

2. IMPROVING CLASSIFICATION COMPLEXITY
OF KERNEL-BASED CLASSIFIERS

After the classifier’s parameters are learned, the class of a test

signal will be determined by the trained classifier. The incur-

ring classification complexity dictates the on-line processing

power, so it may become a critical concern for green IT appli-

cations. To be thorough, we shall explore all three candidate

classification schemes before concluding that the best scheme

will require J ′ ≈ J operations.

2.1. Classification Complexity for RBF Kernels

For RBF-kernel classifiers, the decision function is

f(x) =
N∑

n=1

anK(x,xi) + b = aT−→k (x) + b. (1)

To compute the squared-distance ||x||2 + ||xi||2 − 2xT xi

in the RBF function K(x,xi), it requires roughly M opera-

tions, each operation involves one MAC (multiplication-and-

addition). The more training data the higher the model com-

plexity. More exactly, the complexity is NM .

2.2. Inner-Product in Intrinsic Space

Note that the decision function may also be computed from

the inner-product in the intrinsic space because

f(x) =
N∑

i=1

ai
−→
φ (xi)T−→φ (x) + b = uT−→φ (x) + b

Given a test pattern x, it (1) requires a minimum of J (p) oper-

ations to produce all the elements of
−→
φ (x); and then (2) costs

J (p) operations to compute uT−→φ (x). The total classification

complexity amounts to 2 × J (p), i.e. it is independent of N .

2.3. Consecutive Tensor Operations

Let us now introduce a new method to further save almost

half of the above classification complexity. As an example,

we treat the POLY 3 case in full detail:

f(x) =
N∑

n=1

anK(x,xn) + b =
N∑

n=1

an

(
x̃T x̃n

)3
+ b

=
M+1∑
i=1

M+1∑
j=1

M+1∑
k=1

w̃ijkx̃(i)x̃(j)x̃(k) + b,

where w̃ijk ≡ ∑N
n=1 anx̃

(i)
n x̃

(j)
n x̃

(k)
n , with x̃

(i)
n , i = 1, · · · , M+

1 being the variables in the expanded vector: x̃ ≡ [
σ−1xT 1

]T
.

For best computational efficiency, the order of computations

had better be rearranged as follows:

f(x) =
M+1∑
i=1

x̃(i)

⎡
⎣M+1∑

j=1

x̃(j)

(
M+1∑
k=1

w̃ijkx̃(k)

)⎤
⎦ + b.

By exploiting the (3-way) symmetry of the tensor represented

by w̃ijk, we have

f(x) =
M+1∑
i=1

x̃(i)

⎡
⎣ i∑

j=1

x̃(j)

(
j∑

k=1

uijkx̃(k)

)⎤
⎦ + b,

where uijk = γijkw̃ijk and {γijk} denote the multino-

mial coefficients. 1 Therefore, the classification complexity

amounts to J ′ = J (3) + J (2) + J (1) + 1.

Classification Complexity. By induction, the classification

complexity for a POLY p kernel is

J ′ =
p∑

q=1

J (q) +1 =
p∑

q=1

(
M + q

q

)
+1 =

(
M + p + 1

p

)
.

With a complexity J ′ ≈ J , it is clearly the most cost-effective

choice when the training size N is large.

3. FINITE-J-DEGREE APPROXIMATION OF RBF

We now face a dilemma that, on one hand, the RBF kernel can

deliver the best performance but it has an indefinite intrinsic

degree; on the other hand, polynomial kernels may compro-

mise the performance but it offers cost-effective implementa-

tion due to their finite intrinsic degree.

Fortunately, polynomial kernels are not the only kernels

that have a finite intrinsic degree. A simple and intuitive way

to combine the best of (the performance of) RBF and (the

finite degree of) POLY kernels is by the following truncated-

RBF (TRBF p) kernel:

K(x,y) = exp
{
−‖x‖2

2σ2

} [
p∑

k=1

1
k!

(x · y
σ2

)k
]

exp
{
−‖y‖2

2σ2

}
,

with each basis function, barring a factor, having the form:

exp

{
−‖x‖2

2σ2

} (
x(1)

)d1 · · ·
(
x(M)

)dM
(
x(M+1)

)dM+1
,

which strictly speaking is non-polynomial. Nevertheless, the

intrinsic degree of TRBF p remains to be

J = J (p) =
(

M + p
p

)
=

(M + p)!
M !p!

. (2)

Moreover, the classification complexity for TRBF p is J ′ ≈
J = J (p), i.e. it is exactly the same as POLY p kernel.

Note that TRBF is simply a finite-order Taylor-expansion,

for a more sophisticated RBF approximation, see [1].
1Note that uijk’s, being exactly the same as the coefficients of the intrin-

sic decision vector u, can be obtained via Eq. 4.
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Fig. 3. The computer cycles recorded with the MatLab clas-

sification codes on Intel-Core-I5-2410M Microprocessor (2.3

GHz), when training the ECG dataset. It shows that direct

PDA requires O(N3) and SVM O(N2) operations. while the

fast-PDA curve grows linearly with N , more exactly J2N .

4. FAST LEARNING KERNEL METHODS

All kernel-based classifiers work with a kernel matrix which

is tightly linked to the intrinsic data matrix Φ:

K = ΦT Φ, where Φ =
[ −→

φ (x1)
−→
φ (x2) · · · −→

φ (xN )
]
.

4.1. Learning Complexities for PDA and SVM

For PDA and SVM classifiers, the learning complexities grow

with N at very different rates.

• Learning Complexity of PDA. PDA is a kernel-based

variant of LDA [2], with its decision function given as

f(x) = aT−→k (x) + b, where the decision vector a can

be learned by the following formula:

a = [K+ρI]−1(y−be), where b =
yT [K + ρI]−1e
eT [K + ρI]−1e

.

(3)

where y ≡ [y1 · · · yN ]T , e ≡ [1 · · · 1]T , and ρ denotes

the perturbation variance. The direct PDA solution in-

volves the inversion of the N ×N matrix (K+ ρI) and

therefore incurs a high complexity of O(N3).

• Learning Complexity of SVM. The SVM learning

involves a quadratic programming problem. By invok-

ing the SMO scheme, the SVM learning cost is report-

edly to grow at a modest rate near O(N2). [3]

For a huge N , neither PDA’s O(N3) nor SVM’s O(N2) is

affordable. We must design a numerically more efficient

method whose learning complexity grows linearly with N .

4.2. Fast Algorithm for PDA

The scatter matrix in the intrinsic space is S = ΦΦT . Since

[K + ρI]−1 = [ΦT Φ + ρI]−1

= ρ−1I − ρ−1ΦT [ρI + S]−1 Φ,

therefore,

Φ[K + ρI]−1 = ρ−1Φ − ρ−1ΦΦT [ρI + S]−1 Φ

= ρ−1
(
I − S [ρI + S]−1

)
Φ = [S + ρI]−1 Φ,

and the decision vector u may be derived as:

u = Φa = Φ[K + ρI]−1[y − be]

= [S + ρI]−1 Φ[y − be], (4)

where b =
yT e−(Φy)T (S+ρI)−1(Φe)

eT e−(Φe)T (S+ρI)−1(Φe)
. The decision function is

f(x) = uT−→φ (x) + b . (5)

Computationally, this fast-PDA algorithm incurs three main

costs: (1) the computation of the J × J scatter matrix S
requires J2N operations; (2) the inversion of the J × J
matrix S + ρI requires roughly J3 operations; and (3) the

matrix-vector multiplications require only a negligible order

of NJ operations. (For simplicity, the exact scaling factors

are omitted here.) In summary, the learning complexity is

Min
(

N3, J3 + J2N
)
. When N � J , the complexity

becomes simply J2N , which represents a drastic saving.

Simulation for Verification of Learning Efficiency. The

simulation study was based on the MIT-BIH ECG dataset for

arrhythmia detection. [4] The full database contains a total

of 112,803 heart beats, and M = 21 morphology features

are extracted to represent each beat. The computational costs

of SVM, PDA, and fast-PDA are depicted in Figure 3. 2The

computer cycles recorded by our simulation provide the em-

pirical evidence to support our theoretical comparative analy-

sis. It shows that when N is huge, say N ≥ 80K, the learn-

ing complexity becomes very costly for both direct-PDA and

SVM. In contrast, the fast PDA offers a much higher learning

efficiency to cope with an even larger N which will in turn

lead to a higher prediction accuracy, cf. Figures 4 and 5.

5. PRUNING OF “ANTI-SUPPORT” VECTORS

The key to the success of SVM learning lies in its identifica-

tion of a set of ”support vectors” which exclusively determine

the decision boundary. Motivated by such SVM learning prin-

ciple, it is natural to postulate that PDA’s performance may

also be enhanced if we are more selective with the admissible

training vectors. This is the principle behind the P-PDA.

For PDA and SVM, each vector xi is associated with an

error ξi ≡ yi−f(xi). [2] According to Eq. 3, the error vector
is −→

ξ = [y − be] − Ka = ρa.

The anti-support vectors xi are those with error ξi exceeding a

certain threshold. These are considered harmful because they

2The training time for TRBF3-SVM (not shown) is almost the same as

RBF-SVM.
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Fig. 4. Experimental results of consecutive P-PDAs show

monotonic improving performance with pruning iterations.
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Fig. 5. Experimental results of arrhythmia detection. Ac-

curacy for different classifiers: RBF-SVM, TRBF-SVM,

TRBF-PDA, and TRBF-PPDA. The following parameters

were adopted σ = 2.5 for both RBF and TRBF 3 kernels,

C = 10 for SVM and ρ = 0.1 for both PDA and P-PDA.

assume larger weights and more strongly distort the learned

decision boundary. Thus it is imperative to exclude these vec-

tors from participating in the decision rule. The remaining

probational dataset can be used to learn a new decision bound-

ary in the next iteration. This process will be repeated over

many iterations.

Intuitively, the performance should improve since the new

result will be free from the undue influence of the harmful

vectors. Figure 4 demonstrates such improvement during the

first 40-60 iterations of the pruning process ( 4% pruned per

iteration), before the performance saturates and then eventu-

ally deteriorates when too few training vectors remain.

6. COMPARISON OF SVM, PDA, AND P-PDA

Based on the MIT-BIH ECG dataset, various combinations of

classifiers and kernels are tested and their prediction accura-

cies, training times, and power budgets are evaluated.

Comparison of Performance. The prediction performances

of SVM, PDA, and P-PDA are depicted in Figure 5.

• Performances of Different Kernels. It is no surprise

that RBF-SVM has the highest performance and that

SVM and PDA using TRBF 4 kernel outperform their

counterparts using TRBF 3 kernel, i.e. TRBF 4 is a

closer approximation to RBF than TRBF 3.

• Performances Improve with N . As confirmed by both

Figures 4 and 5, the accuracies for all the classifier-

kernel combinations monotonically increase with N .

• Performances of Different Classifiers. Note also that,

for TRBF 4 kernel, SVM and PDA have about the same

performance. For the TRBF 3 kernel, SVM outper-

forms PDA when training sizes increase. However, en-

forced by training vector pruning, P-PDA reclaims a

slight performance advantage over SVM.

• High-Performance and Low-Power Classifiers. Through-

out the experiments, the highest accuracy benchmark

99% is set by RBF-SVM with N ≥ 80K. It is curious

to compare RBF-SVM and RBF-PDA and help assess

the performance-complexity tradeoff. Unfortunately,

learning of RBF-PDA for N ≥ 80K is computationally

infeasible. As a consolation, TRBF offers an approxi-

mate comparison. In fact, the accuracy of TRBF-PDA

is already as high as 98.8%. The .2% gap may be at-

tributed to truncation approximation incurred by TRBF.

It may also be caused by the fact that SVM uses a more

selective subset of (supporting) training vectors. To

explore this possibility, we decided to train a TRBF4-

PPDA, with almost one-day’s computing, and obtain

again a 99% accuracy – more exactly 98.97% – shown

as the big red circle on the rightmost side of Figure 5.

Classification Efficiency of TRBF-PPDA. According to

[5], the power budgeted for ECG applications is typically lim-

ited to 1-10mW for wearable devices or 10-100 μW for im-

plantable devices. Based on the budget, while it costs only

1.56 mJ per ECG feature extraction, the energy cost per clas-

sification would be 49.52 mJ via the conventional RBF-SVM.

[5] To meet the energy budget, such a high cost must be cut

by 10 to 40 folds. This translates to an intrinsic degree of

J = 2000 to 8000, corresponding to TRBF 3 and TRBF 4 re-

spectively. This suggests that TRBF 3 can operate as a green

classifier way under the allocated power budget.
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