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ABSTRACT

Label powerset (LP) method is one category of multi-label learn-
ing algorithms. It reduces the multi-label classification problem to a
multi-class classification problem by treating each distinct combina-
tion of labels in the training set as a different class. This paper pro-
poses a basis expansion model for multi-label classification, where a
basis function is a LP classifier trained on a random k-labelset. The
expansion coefficients are learned to minimize the global error be-
tween the prediction and the multi-label ground truth. We derive an
analytic solution to learn the coefficients efficiently. We have con-
ducted experiments using several benchmark datasets and compared
our method with other state-of-the-art multi-label learning methods.
The results show that our method has better or competitive perfor-
mance against other methods.

Index Terms— Multi-label classification, ensemble method, la-
belset.

1. INTRODUCTION

Multi-label classification has attracted a great deal of attention in re-
cent years. In a conventional single-label classification task, given
a set of K possible disjoint classes, each instance is associated with
one and only one class. In multi-label classification, an instance
could be associated with a set of labels jointly. For example, in a
music tagging website, a song might be jointly tagged as “vocal”,
“slow”, and “r&b”. In a social bookmarking website, a website
might be tagged as “handheld”, “technology”, and “mobile”. In im-
age classification tasks, an image may contain several concepts, such
as “sea” and “sunset”. Such prediction tasks are usually denoted as
multi-label classification problems.

Label powerset (LP) [1] method is one category of multi-label
learning algorithms. It reduces the multi-label classification prob-
lem to a single-label multi-class classification problem by treating
each distinct combination of labels in the training set as a different
class. Given a test instance, the multi-class LP classifier predicts the
most probable class and can be transformed to a set of labels. Table
1 shows an example of multi-label dataset with transformed multi-
class label based on LP. In contrast to the binary relevance approach,
which loses the label dependency information while learning a bi-
nary classifier for each label independently, the LP method exploits
conditional label dependency information by learning the joint label
distribution [2]. However, when the number of labels increases, the
number of potential classes increases proportionally, and each class
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Table 1. An Example of Multi-Label Dataset with Transformed
Multi-Class Label

Instance Label Set Transformed Class

1 Rock, Guitar 1

2 Rock, Guitar, Drum 2

3 Rock, Guitar, Vocal 3

4 Country, Guitar 4

5 Rock, Guitar, Drum 2

6 R&B, Vocal 5

7 Country, Guitar 4

8 Vocal 6

will be associated with very few training instances. Moreover, LP
can only predict labelsets observed in the training data.

In [3], a method called Random k-Labelsets (RAkEL) is pro-
posed to overcome the drawback of the LP method. RAkEL ran-
domly selects a number of label subsets from the original set of la-
bels and uses the LP method to train the corresponding multi-label
classifiers. The final prediction of RAkEL is made by voting of the
LP classifiers in the ensemble. By using this method, each of the
transformed multi-class classification problems are computationally
simpler since the number of classes is reduced, and each class will
be associated with more training instances. Previous research [4]
states that “a necessary and sufficient condition for an ensemble of
classifiers to be more accurate than any of its individual members is
if the individual classifiers are accurate and diverse”. An accurate
classifier is the one that has an error rate better than random guess-
ing. In RAkEL, the property of classifiers diversity is achieved by
randomly selecting label subsets. Experiment results have shown
the improvement of RAkEL over LP.

This paper is inspired by another ensemble method, AdaBoost
[5]. The decision function of AdaBoost is a weighted sum of base
classifiers ft(x) of the following form: F (x) =

∑
t αtft(x). For

each iteration t, AdaBoost algorithm maintains a weight vector Dt

over training instances and uses the base learner to find a model
ft(x) to minimize a weighted error according to Dt. The coefficient
αt controls the influence of each base classifier ft(x) to the decision
function and is determined analytically by minimizing a function of
training error upper bound. The derived function for calculating αt

shows that αt is proportional to the predictive performance of ft(x)
on the weighted error according to Dt.

Motivated by the success of AdaBoost learning procedure, this
paper propose a basis expansion model [6] for multi-label classifica-
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tion of the following form:

H(x) =

M∑
m=1

βmhm(x), (1)

where the basis functions hm(x) are the LP classifiers trained on
random k-labelsets. General basis expansion model treats the classi-
fiers hm(x) as dictionary functions and tries to approximate the un-
known target classifier using the linear combination of the dictionary
functions. Intuitively, the basis expansion model is more flexible
and has better chance to accurately approximate the target classifier.
In our proposed method, the coefficients β are learned to minimize
the global error between the prediction of H(x) and the multi-label
ground truth. Since each k-labelset is selected randomly, some of the
LP classifiers inevitably have bad predictive performance and might
be redundant. The coefficients βt can be considered as reflecting the
predictive performance or redundancy of the corresponding classi-
fiers hm(x).

When using basis expansion model, controlling the complexity
to avoid overfitting is very important. We propose a regularized ob-
jective function to overcome this problem. The proposed objective
function is regularized by both the two-norm of β and a hypergraph
Laplacian regularizer. The hypergraph captures the high-order rela-
tion among instances and multiple labels jointly. It has been success-
fully used in feature transformation [7] for multi-label classification
and an SVM-based multi-label classifier [8]. We derive an analytic
solution to learn the coefficients efficiently. The RAkEL [3] can be
considered as a special case of our proposed method when the coeffi-
cients are assigned uniformly. We have conducted experiments using
several multi-label benchmark datasets and compared our method
with other state-of-the-art multi-label learning methods. The results
show that our method has better or competitive performance against
other methods.

The remainder of this paper is organized as follows. In Section
2 we present the Generalized k-Labelset Ensemble (GKL). Then we
present and discuss the results of our experiments in Section 3. Fi-
nally, Section 4 contains some concluding remarks.

2. GENERALIZED K-LABELSET ENSEMBLE

We first introduce the concept of multi-label classification. Let
x ∈ R

d, which is a d-dimensional input space, and Y ⊆ L =
{λ1, λ2, ..., λK}, which is a finite set of K possible labels. To
facilitate the discussion, hereafter, Y is represented by a vector
y = (y1, y2, ..., yK) ∈ {1,−1}K , in which yj = 1 ⇔ λj ∈
Y, yj = −1 ⇔ λj /∈ Y . We denote the labels of the whole in-
stances by Y ∈ R

N×K , where the i-th row of Y is yi. Given a
training set (xi, yi)

N
i=1 that contains N samples, the goal of multi-

label classification is to learn a classifier H : R
d → 2K such that

H(x) predicts which labels should be assigned to an unseen sample
x.

Algorithms 1 and 2 describe the training and classification pro-
cesses of the proposed GKL, respectively. A k-labelset is a labelset
R ⊆ L with |R| = k. In the training stage of GKL, the coeffi-
cients β are learned by solving a minimization problem formulated
as follows:

min
β

1
2
||Y −

M∑
m=1

βmQm||2F + B
2
||β||22

+C
2

trace

(( M∑
m=1

βmQm

)T

L
( M∑

m=1

βmQm

))
,

(2)

Algorithm 1 The training process of GKL

• Input: number of models M , size of labelset k, learning
parameters B and C, set of labels L, and the training set
D = (xi, yi)

N
i=1

• Output: an ensemble of LP classifiers gm, the corresponding
k-labelsets Rm and coefficients βm

1. Initialize S ← Lk

2. for m ← 1 to min(M ,|Lk|) do

• Rm ← a k-labelset randomly selected from S
• train the LP classifier gm based on D and Rm

• calculate a transformed prediction of gm using (3)

• S ← S \ Rm

3. end
4. Learn β using (4)

Algorithm 2 The classification process of GKL

• Input: number of models M , a test sample x, an ensemble
of LP classifiers gm, and the corresponding k-labelsets Rm

and coefficients βm

• Output: the multi-label classification vector r =
(r1, r2, ..., rK)

1. for j ← 1 to K do

(a) rj = 0

(b) for each gm, if j ∈ Rm do
• rj = rj + βm · q(gm(x), j)

(c) end

2. end

where || · ||F is the Frobenius norm of a matrix, L is the hypergraph
Laplacian, and Qm ∈ R

N×K is a transformed prediction of gm

which will be described in more detail below. The prediction of a
multi-class LP classifier, gm, for a sample x is denoted by gm(x) ∈
{1, 2, . . . , V }. Note that V will be much smaller than 2k if the data
is sparse. The i, j-th element in Qm is calculated by q(gm(xi), j),
which is defined as:

q(gm(xi), j) =

⎧⎨
⎩

1, if j ∈ Rm and j is positive in gm(xi),
−1, if j ∈ Rm and j is negative in gm(xi),
0, if j /∈ Rm.

(3)
For example, when k = 2, the classes 1, 2, 3, and 4 correspond
to (1, 1), (1,−1), (−1, 1), and (−1,−1), respectively. If label j is
not included in Rm, q(gm(xi), j) is 0. If label j corresponds to
the first label of Rm, q(1, j), q(2, j), q(3, j), and q(4, j) will out-
put scores 1, 1,−1, and −1, respectively. We note that the function
q(gm(x), j) is used to generate the hm(x) in the final classifier (1)
by gathering the predictions on all label j.

The first term in the objective function aims to minimize the
global error between the prediction of H(x), that is,

∑M
m=1 βmQm,

and the multi-label ground truth Y . The second term is a two-norm
regularization term of the coefficients β. If the parameter B is larger,
then we will obtain smoother coefficients β. The third term is a hy-
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pergraph regularization term. A hypergraph is a generalization of
a graph, in which edges, called hyperedges, may connect with any
positive number of vertices. The instances with their labels can be
represented as one single hypergraph. The vertex is a data point and
the hyperedge is a label that connects the instances associated with
it. The hypergraph Laplacian L is a similarity measure of instances
that calculates the random walk probability starting from one node
(instance) until reaching another note on the hypergraph. According
to the hypergraph Laplacian, two instances tend to have high simi-
larity if they have large amount of overlapping labels. The intuition
behind the hypergraph regularization term is that the prediction on
two instances, that is, two rows in

∑M
m=1 βmQm, should be similar

if they have high similarity according to the hypergraph. This kind
of hypergraph representation has been used for multi-label classifi-
cation in other manners [7, 8].

After some calculus, we have derived the solution of (2) as fol-
lows:

β∗ = (Q̂T Q̂ + BI +
C

2
(P + P T ))−1Q̂Ŷ (4)

where each column in Q̂ ∈ R
(L·N)×M is vectorized from Qm by

reshaping Qm into R
(L·N), Ŷ ∈ R

(L·N) is vectorized from Y , I is
the M ×M identity matrix, and P ∈ R

M×M =
∑L

j=1 ρj where ρj

is computed as follows:

ρj =

⎛
⎜⎝

QT
1,jLQ1,j · · · QT

1,jLQM,j

...
. . .

...

QT
M,jLQ1,j · · · QT

M,jLQM,j

⎞
⎟⎠ , (5)

where Qm,j is the j-th column vector in Qm.

3. EXPERIMENTS

We compare the proposed methods with other multi-label classifica-
tion algorithms on several data sets. In the following sections, we
describe the experiment setup including the data sets, the compared
algorithms, and the evaluation criteria, and then discuss the experi-
ment results.

3.1. Experiment Setup

We conduct experiments on ten benchmark datasets belonging to
different domains. The data sets include scene, enron, cal500, ma-
jorminer [9], medical, bibtex, and four versions of delicious (from
dlc1 to dlc4). More details on these data sets are available at the
MULAN library website1. We use five popular evaluation metrics
for multi-label classification: the Hamming loss, ranking loss, set
error, one error, and average precision. Hamming loss calculates the
percentage of labels whose relevance is predicted incorrectly. Rank-
ing loss evaluates the average fraction of label pairs, that is, a posi-
tive label versus a negative label, that are not correctly ordered. Set
error evaluates a multi-label prediction as a whole. It evaluates the
percentage of predicted label sets that do not exactly match the true
label sets. One error evaluates the number of times the top-ranked
label is not relevant. For these four metrics, the smaller the result
value is, the better our algorithm performs. Average precision eval-
uates that, for each relevant label, the percentage of relevant labels
among all labels that ranked above it.

We compare the performance of GKL with that of four state-
of-the-art multi-label learning algorithms: RAkEL, multi-label K-
nearest neighbor (MLKNN), instance-based learning by logistic

1http://mulan.sourceforge.net/datasets.html

regression (IBLR), and backpropagation for multi-Label learning
(BPMLL). These algorithms are implemented in the MULAN pack-
age. We use SVM to train the LP classifiers in GKL and RAkEL.
The parameters k and M in GKL and RAkEL are selected using
cross-validation. We perform three-fold cross-validation sixty times
and calculate the mean and standard deviation of the results.

3.2. Experiment Results

The experimental results are summarized in Table 2. The numbers
in parentheses represent the rank of the algorithms among the com-
pared algorithms. We do not report the performance on cal500 in
terms of set error since none of the methods can achieve an error rate
better than 1.0. The average rankings of our method on ten datasets
using five different metrics are 1.4, 2.0, 1.4, 1.3, and 1.7. We can ob-
serve that RAkEL performs well in terms of Hamming loss, but not
so well on the other metrics. We can observe that MLKNN performs
better than GKL only in terms of ranking loss. Generally speaking,
our proposed GKL achieves the best performance comparing with
the other state-of-the-art methods.

4. CONCLUSION

This paper proposes a basis expansion model for multi-label clas-
sification, based on the label powerset method. We have proposed
a novel objective function to learn the expansion coefficients and
found an analytic solution to learn the coefficients efficiently. The
experiment results show that the performance of LP-based ensemble
method can be significantly improved by assigning different weights
to the classifiers in the ensemble.
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Table 2. Experiment Results

GKL RAkEL MLKNN IBLR BPMLL

Hamming Loss
scene 0.097±0.002 (3) 0.097±0.002 (2) 0.090±0.002 (1) 0.147±0.003 (4) 0.245±0.035 (5)
enron 0.049±0.000 (1) 0.049±0.000 (2) 0.053±0.000 (3) 0.108±0.001 (5) 0.069±0.001 (4)
cal500 0.164±0.001 (2) 0.163±0.001 (1) 0.277±0.001 (3) 0.363±0.003 (5) 0.308±0.002 (4)

majorminer 0.081±0.000 (1) 0.081±0.000 (2) 0.085±0.000 (3) 0.119±0.001 (5) 0.093±0.001 (4)
medical 0.010±0.000 (1) 0.010±0.000 (2) 0.016±0.000 (3) 0.492±0.017 (5) 0.028±0.000 (4)
bibtex 0.012±0.000 (2) 0.012±0.000 (1) 0.014±0.000 (3) 0.074±0.000 (5) 0.016±0.000 (4)
dlc1 0.039±0.000 (1) 0.039±0.000 (2) 0.040±0.000 (3) 0.054±0.001 (5) 0.051±0.000 (4)
dlc2 0.033±0.000 (1) 0.033±0.000 (2) 0.033±0.000 (3) 0.064±0.001 (5) 0.035±0.000 (4)
dlc3 0.031±0.000 (1) 0.031±0.000 (2) 0.032±0.000 (3) 0.077±0.001 (5) 0.034±0.000 (4)
dlc4 0.025±0.000 (1) 0.025±0.000 (2) 0.026±0.000 (3) 0.158±0.007 (5) 0.028±0.001 (4)

AvgRank 1.40 1.80 2.80 4.90 4.10

Ranking Loss
scene 0.103±0.003 (2) 0.155±0.004 (3) 0.081±0.002 (1) 0.169±0.006 (4) 0.501±0.015 (5)
enron 0.090±0.001 (1) 0.247±0.003 (4) 0.095±0.001 (2) 0.306±0.004 (5) 0.118±0.001 (3)
cal500 0.153±0.001 (1) 0.225±0.002 (2) 0.248±0.002 (3) 0.383±0.004 (5) 0.296±0.002 (4)

majorminer 0.125±0.001 (1) 0.175±0.002 (3) 0.149±0.001 (2) 0.176±0.002 (4) 0.382±0.032 (5)
medical 0.055±0.004 (2) 0.110±0.007 (3) 0.046±0.002 (1) 0.119±0.006 (4) 0.290±0.015 (5)
bibtex 0.198±0.001 (2) 0.420±0.002 (5) 0.218±0.001 (3) 0.226±0.003 (4) 0.077±0.001 (1)
dlc1 0.178±0.001 (3) 0.647±0.002 (5) 0.157±0.000 (2) 0.140±0.002 (1) 0.202±0.001 (4)
dlc2 0.174±0.001 (3) 0.760±0.008 (5) 0.156±0.001 (1) 0.161±0.002 (2) 0.202±0.001 (4)
dlc3 0.219±0.001 (3) 0.775±0.003 (5) 0.196±0.001 (1) 0.214±0.000 (2) 0.250±0.002 (4)
dlc4 0.214±0.001 (2) 0.755±0.002 (5) 0.191±0.001 (1) 0.260±0.002 (4) 0.245±0.001 (3)

AvgRank 2.00 4.00 1.70 3.50 3.80

Set Error
scene 0.274±0.005 (2) 0.285±0.006 (3) 0.256±0.006 (1) 0.412±0.010 (4) 0.834±0.018 (5)
enron 0.776±0.005 (1) 0.782±0.005 (2) 0.889±0.006 (3) 0.915±0.005 (4) 0.996±0.005 (5)

majorminer 0.908±0.003 (1) 0.911±0.003 (2) 0.936±0.003 (3) 0.970±0.003 (4) 0.991±0.003 (5)
medical 0.221±0.006 (1) 0.227±0.007 (2) 0.346±0.008 (4) 0.282±0.010 (3) 0.982±0.009 (5)
bibtex 0.727±0.004 (2) 0.727±0.004 (1) 0.878±0.002 (4) 0.922±0.005 (5) 0.834±0.003 (3)
dlc1 0.787±0.002 (3) 0.806±0.001 (4) 0.782±0.001 (1) 0.786±0.001 (2) 0.867±0.001 (5)
dlc2 0.850±0.001 (1) 0.885±0.004 (3) 0.851±0.001 (2) 0.904±0.004 (4) 0.946±0.001 (5)
dlc3 0.882±0.002 (1) 0.904±0.001 (3) 0.901±0.002 (2) 0.952±0.001 (5) 0.949±0.000 (4)
dlc4 0.878±0.002 (1) 0.896±0.001 (2) 0.898±0.001 (4) 0.896±0.003 (3) 0.970±0.000 (5)

AvgRank 1.44 2.44 2.67 3.78 4.67

One Error
scene 0.254±0.005 (2) 0.257±0.005 (3) 0.235±0.005 (1) 0.384±0.010 (4) 0.812±0.022 (5)
enron 0.287±0.013 (2) 0.278±0.008 (1) 0.319±0.007 (3) 0.536±0.012 (5) 0.494±0.027 (4)
cal500 0.110±0.011 (2) 0.203±0.015 (4) 0.078±0.006 (1) 0.350±0.017 (5) 0.131±0.068 (3)

majorminer 0.369±0.006 (1) 0.374±0.006 (2) 0.452±0.007 (3) 0.723±0.010 (4) 0.835±0.068 (5)
medical 0.146±0.005 (1) 0.148±0.006 (2) 0.264±0.009 (4) 0.199±0.010 (3) 0.976±0.011 (5)
bibtex 0.389±0.001 (1) 0.389±0.001 (2) 0.603±0.004 (4) 0.793±0.008 (5) 0.541±0.007 (3)
dlc1 0.572±0.002 (1) 0.578±0.001 (3) 0.575±0.003 (2) 0.611±0.005 (4) 0.692±0.000 (5)
dlc2 0.597±0.002 (1) 0.710±0.017 (3) 0.616±0.003 (2) 0.764±0.007 (4) 0.769±0.009 (5)
dlc3 0.638±0.003 (1) 0.695±0.003 (3) 0.644±0.004 (2) 0.819±0.003 (5) 0.792±0.000 (4)
dlc4 0.576±0.001 (1) 0.643±0.001 (4) 0.623±0.004 (3) 0.619±0.010 (2) 0.807±0.000 (5)

AvgRank 1.30 2.70 2.50 4.10 4.40

Average precision
scene 0.841±0.003 (3) 0.842±0.003 (2) 0.860±0.003 (1) 0.754±0.007 (4) 0.421±0.013 (5)
enron 0.666±0.004 (1) 0.646±0.004 (2) 0.620±0.003 (3) 0.399±0.005 (5) 0.505±0.005 (4)
cal500 0.613±0.003 (2) 0.603±0.003 (3) 0.635±0.003 (1) 0.493±0.004 (5) 0.577±0.006 (4)

majorminer 0.599±0.003 (1) 0.593±0.003 (2) 0.541±0.002 (3) 0.427±0.004 (4) 0.221±0.029 (5)
medical 0.861±0.004 (1) 0.855±0.005 (2) 0.794±0.006 (3) 0.792±0.009 (4) 0.122±0.010 (5)
bibtex 0.522±0.002 (1) 0.515±0.002 (2) 0.338±0.003 (4) 0.244±0.005 (5) 0.445±0.003 (3)
dlc1 0.475±0.000 (3) 0.416±0.001 (4) 0.495±0.001 (2) 0.498±0.003 (1) 0.393±0.000 (5)
dlc2 0.421±0.004 (2) 0.285±0.007 (5) 0.431±0.002 (1) 0.364±0.005 (3) 0.308±0.001 (4)
dlc3 0.357±0.001 (2) 0.278±0.001 (3) 0.359±0.003 (1) 0.275±0.001 (4) 0.253±0.001 (5)
dlc4 0.357±0.002 (1) 0.298±0.001 (3) 0.354±0.001 (2) 0.271±0.002 (4) 0.217±0.001 (5)

AvgRank 1.70 2.80 2.10 3.90 4.50
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