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ABSTRACT

The Boosting algorithm has two main variants: the gradi-

ent Boosting and the totally-corrective column-generation

Boosting. Recently, the latter has received increasing at-

tention since it exhibits a better convergence property, thus

resulting in more efficient strong learners. In this work,

we point out that the totally-corrective column-generation

Boosting is equivalent to the gradient-descent method for

the gradient Boosting in the weak-learner selection criterion,

but uses additional totally-corrective updates for the weak-

learner weights. Therefore, other techniques for the gradient

Boosting that produce continuous-valued weak learners, e.g.

step-wise direct minimization and Newtons method, may also

be used in combination with the totally-corrective procedure.

In this work we take the well known AdaBoost algorithm as

an example, and show that employing the continuous-valued

weak learners improves the performance when used with the

totally-corrective weak-learner weight update.

Index Terms— Boosting, totally corrective, column gen-

eration, gradient

1. INTRODUCTION

The Boosting algorithm is one of the most important tech-

niques in machine learning. It is a supervised learning method

that learns a function F (x) to accurately predict the label y
of the sample x. The learned function F (x), usually termed a

strong learner, is a non-negative linear combination of a num-

ber of less powerful prediction functions {fj (x)}, usually

known as weak learners:

F (x) =
∑N

j=1
wjfj (x), wj ≥ 0. (1)

By properly selecting the weak learners and determining their

weights, the strong learner can be very accurate. Furthermore,

feature selection is naturally embedded in the Boosting algo-

rithm. Considering each weak learner uses only a single fea-

ture, the resulting strong learner effectively selects a subset

of features to make predictions. This is especially important

in some applications, e.g. visual object recognition, where

a large number of features are available while the computa-

tional power is relatively limited. For example, efficient face

detectors are built by the Boosting method in [1].

Training a Boosting classifier is a step-wise procedure to

optimize a loss functional L (F ). Starting with F0 (x) = 0,

and given a pool of candidate weak learnersH = {h1, h2, ...},
in each round t a new weak learner ft is selected from H,

and added into Ft−1 (x). The two main paradigms of the

Boosting algorithm are the gradient Boosting methods [2]

and the totally-corrective column-generation Boosting meth-

ods [3]. The biggest difference between these methods is

how the weak learners’ weights are adjusted. For the gradient

Boosting, only the newly selected weak learner’s weight is

decided, and all the previous weak learners’ weights are un-

modified. The process draws a path in the functional space of

F that approaches the optimal value of L. Many works follow

this paradigm, e.g. the AdaBoost [2] using the exponential

loss, the LogitBoost [2] using the logit loss, the AnyBoost

[4] that generalizes to any convex loss, and the multi-instance

AdaBoost [5] that deals with the multi-instance problem. In

contrast, the totally-corrective Boosting methods modify all

weak learners weights in every round, in order to find the

optimal combination that minimizes L. The outcome is a

faster convergence speed and assured convergence in finite

steps, while the gradient-based methods only converge at

the limit. The first totally-corrective Boosting algorithm is

the LPBoost [3], which minimizes the hinge loss and in-

troduces the column-generation technique for selecting new

weak learners. The column-generation technique is adopted

in later methods, e.g. [6], and is accepted as a standard for

totally-corrective Boosting.

The column-generation method for selecting new weak

learners is identical to the gradient descent in gradient Boost-

ing, which usually limits the weak learners to binary clas-

sifiers. In this work we propose other techniques in gradi-

ent Boosting, e.g. step-wise direct minimization and New-

ton’s method, that output continuous-value predictions, are

equally suitable for the totally-corrective update. Experimen-

tal results show that for totally corrective Boosting, using

continuous-valued weak learners also results in faster conver-
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gence than using the binary classifiers does.

The two paradigms of Boosting algorithms will be de-

tailed in Section 2. Then in Section 3 we take the Ad-

aBoost algorithm as an example, and show the details of us-

ing continuous-valued weak learners with totally-corrective

update. Section 4 gives the experimental results proving the

efficacy of the method. We conclude the paper in Section 5.

2. TWO PARADIGMS OF THE BOOSTING
ALGORITHM

Training a Boosting classifier involves optimizing a loss

functional L. Given a training set with ground-true labels

{(xi, yi) , i = 1, ...,M}, we optimize the empirical loss,

which is often the sum of the loss on individual samples:

min
F

L (F ) =
M∑
i=1

l (F (xi) , yi). (2)

For example, the exponential loss l (F (xi) , yi) = e−yiF (xi)

is used in AdaBoost, and the Hinge loss l (F (xi) , yi) =
max (0,−yiF (xi)) is used in LPBoost.

2.1. Gradient Boosting

The gradient Boosting deals with differentiable convex loss.

Consider the strong-learner score F = [F (x1) , ..., F (xM )]
as the variables, the gradient-based Boosting solves an uncon-

strained optimization problem for the M -D vector variable

F, using a step-wise additive update in the form of Ft+1 ←
Ft (x) + wt+1ft+1 (x). The three major techniques for solv-

ing this problem are the gradient-descent method, the step-

wise direct minimization method, and the Newtons method.

2.1.1. Gradient descent

For the gradient-descent method, a new weak learner is found

to approximate the negative gradient direction of L (F ):

ft+1 (x) = argmax
h

M∑
i=1

− ∂L

∂F (xi)
h (xi). (3)

For 2-class classification, the loss is usually a function of

the margin z = yF (x). Therefore, approximation of the neg-

ative gradient direction can be implemented by minimizing

the 0-1 error under the sample weights ωi = −∂L/∂zi :

ft+1 (x) = argmin
h

M∑
i=1

ωi (−yih (xi)). (4)

Then the weight wt+1 of the new weak learner, i.e. the step

size in the approximate negative gradient direction, is deter-

mined by line search.

2.1.2. Step-wise direct minimization

For direct minimization, a new weak learner is found to di-

rectly minimize L (F + f). The form of the new weak learner

can be obtained by setting the gradient to 0:

∂L (F + f)

∂f
= 0. (5)

2.1.3. Newton’s method

For the Newton’s method, the new weak-learner is obtained

from:

f = H−1 ∂L

∂F
, (6)

where H is the Hessian of the loss functional, evaluated at the

current strong learner F . For the step-wise direct minimiza-

tion and the Newton’s method, the new weak-learner’s weight

is 1.

All these gradient Boosting methods update the strong

learner F in an additive manner, keeping the weights of pre-

viously selected weak learners unchanged. In the functional

space the strong learner F gradually moves towards the opti-

mal position.

2.2. Totally-corrective column-generation Boosting

To derive the totally-corrective column-generation Boosting,

we assume all weak learners can be obtained in advance, and

we introduce the matrix H such that the j-th column H:j

is the score of the j-th weak learner from the pool H =
{h1, h2, ...}, i.e.:

H:j = [hj (x1) , ..., hj (xM )]
T
. (7)

Then the Boosting problem is to find an optimal linear com-

bination that minimizes the loss, subject to proper constraints

on the weights to make the problem well formed:

min
w

L (Hw) s.t. w ≥ 0, 1Tw = 1/T , (8)

where 1 is a column vector of all 1s, such that we constrain

the sum of weak-learner weights to a fixed value. The L-1

norm constraint on w introduces sparsity into the solution,

such that only a few elements of w are non-zero, and efficient

feature selection can be achieved. T is a hyper parameter set

by the user. In experiments we set T according to the sum of

weak learner weights in non-totally-corrective Boosting.

Since the number of columns in H is usually very

large, the problem cannot be directly solved. The column-

generation technique is suitable for such problems. After

introducing the auxiliary variable F = Hw, the dual prob-

lem can be written as follows:

max
u,r

inf
F,w
L s.t.

M∑
i=1

uiHij ≤ r, · · · (9)

where L is the Lagrangian:
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L (F,w,u,q, r) =L (F) +

M∑
i=1

ui (Fi −Hi:w)

−qTw + r
(
1Tw − 1/T

)
.

(10)

u is the Lagrange multiplier corresponding to the equality

constraint F = Hw. Hi: is the i-th row in H . From the KKT

condition ∂L/∂F = 0, we can obtain ui = −∂L/∂Fi , i.e.

ui is the i-th negative partial derivative of the loss L. “· · · ”
stands for the other constraints implied by the KKT condi-

tions.

In the dual problem, each column of H corresponds to

a constraint
∑M

i=1 uiHij ≤ r. The column-generation tech-

nique works with a reduced matrix Ĥ containing only a subset

of columns from H , equivalent to relaxing the dual problem.

Then in each iteration the most violated constraint that is not

included in Ĥ is found and added to Ĥ:

H:t+1 = argmax
h

M∑
i=1

uih (xi), Ĥ ←
[
Ĥ,H:t+1

]
. (11)

Thus, a new weak learner is selected, and then the weak-

learner weights are updated by solving the primal problem

(8), resulting in a totally-corrective Boosting algorithm.

3. CONTINUOUS-VALUED WEAK LEARNERS
WITH TOTALLY-CORRECTIVE UPDATES

It can be observed that the column-generation criterion for

selecting the new weak learner is identical to the gradient-

descent criterion in the gradient Boosting. Indeed, most of the

previous column-generation Boosting methods also limit the

weak learners to binary classifiers, and select the new weak

learner to minimize the weighted 0-1 loss.

Previous works have shown that the step-wise direct min-

imization and Newtons method can make the gradient Boost-

ing algorithm converge faster. An intuitive thought is that the

convergence speed of the totally-corrective Boosting can be

further increased by using these methods for weak-learner se-

lection.

We take the well-studied AdaBoost as an example. The

direct-minimization step and Newton’s method step for Ad-

aBoost are known as Real-AdaBoost and Gentle-AdaBoost,

respectively. In Real-AdaBoost, the direct minimization step

results in weak learners in the form of the half log-odds:

fj (x) =
1

2
log

P (y = 1,x) e−F (x)

P (y = −1,x) eF (x)

=
1

2
log

Pω (y = 1|x)
Pω (y = −1|x) .

(12)

In Gentle-AdaBoost, the new weak learner is the difference

between the posteriors:

fj (x) = Pω (y = 1|x)− Pω (y = −1|x) , (13)

where the subscript ω denotes a sample-weighted distribution

using the weights ωi = −∂L/∂zi . For both methods, the

weak learners are regression functions that take continuous

values. Following the traditional methods, the weak learner

that leads to the greatest loss decrease is selected.

The newly selected weak learner is going to be used as

a new column of H . Due to the L-1 norm constraint on w
in the totally-corrective primal problem, regularization on

the columns of H is also necessary to keep the problem

well formed. For binary weak learners f (x) ∈ {−1,+1},
the columns of H are implicitly restricted by ‖H:j‖1 = M .

Therefore, we also process the continuous-valued weak learn-

ers such that the new column of H has a fixed L-1 norm M .
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(a) Using stump weak learners
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Fig. 1. Convergence of loss on the training data

4. EXPERIMENTS

We evaluate the totally-corrective AdaBoost using various

criteria for weak-learner selection, i.e. the gradient-descent

method used in Discrete-AdaBoost and column-generation

Boosting; the direct minimization, which leads to the log-

odds estimators used in Real-AdaBoost; and Newton’s
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Fig. 2. ROC curves on the test set

method, which leads to the posterior-difference estimators

used in Gentle-AdaBoost. The totally-corrective update is

performed by solving the Boosting primal problem (8), using

the MOSEK optimization package.

The two most commonly used types of weak learners, the

stumps and the LUTs are used in our experiments. A stump

consists of a threshold and two values on the two sides of the

threshold:

f (x) =

{
v1 x > th
v2 x ≤ th

(14)

For the three different weak-learner selection criteria, differ-

ent stumps are trained. The decision stump sets the value on

one side to 1, and on the other side to -1, according to the opti-

mality criterion of (3). The regression stump for the log-odds

and posterior difference computes the values according to the

samples falling on each side. For the LUTs, the range of fea-

ture values is partitioned into bins of equal size, and for each

bin the value is decided similarly to the stumps. We partition

the value range into 64 bins according to the observed mini-

mum and maximum values for each feature. The partition is

fixed, but the bin values are updated in the learning process.

We evaluate the methods in the pedestrian-detection prob-

lem, using the INRIA dataset. The HOG feature [7] is used.

We extract the HOG feature for 619 blocks of size 16x16,

32x32 and 64x64, resulting in a feature vector of length

22,284. Then, each weak learner is based on a single feature.

We train the Boosting strong classifier for an intermediate

stage of a cascaded detector, where the negative training set

consists of fairly difficult samples. We use 2,474 positive

samples and 5,000 negative samples to train the classifiers.

The AdaBoost objective is to minimize the exponential

loss on the training data. Therefore, we plot the loss func-

tion value against the number of weak learners in Fig.1. It

can be observed that for non-totally-corrective AdaBoost,

the stage-wise direct minimization and Newtons method,

both using continuous-valued weak learners, cause the loss

decreases faster than the binary classifiers used in Discrete-

AdaBoost. But updating the weak learner weights in the

totally-corrective manner significantly improves the conver-

gence speed for the binary classifier weak learners. In ad-

dition, combining the continuous-valued weak learners with

the totally-corrective update further accelerates the conver-

gence speed, for both stumps and LUTs. In Fig.2, the ROC

curve on the test set is shown for totally-corrective AdaBoost

with different types of weak learners. It can be seen that

the generalization performance is also improved by using

continuous-valued weak learners. The results also indicate

that the LUT weak learners are more easily overfitted with

the training data than the stumps are.

5. CONCLUSIONS

The totally-corrective Boosting is an important advance on

the existing Boosting algorithms, and also provides new in-

sights into the nature of the Boosting algorithm generally.

Though the column-generation method implies binary clas-

sifiers as weak learners, thus emulating the gradient-descent

in gradient Boosting, our experiments show that other tech-

niques used in gradient Boosting that outperform gradient de-

scent also lead to better results in combination with totally-

corrective updates. In our future research, we hope that the

theoretical proof can be found to support our algorithm, and

we will also try to apply the hybrid method to other variants

of Boosting algorithms.
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