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ABSTRACT
Current graph embedding frameworks of supervised dimen-

sionality reduction often preserve the intraclass local struc-

tures and maximize the interclass variance. However, this

strategy fails to provide adequate results when strict within-

class multimodalities contradict between-class separations. In

this paper, we propose Hypersphere Distribution Discrimi-

nant Analysis (HDDA), which determines the affinity by con-

sidering not only within-class local structure but also the het-

eropoint distribution in the neighborhood space. If the hetero-

point distribution is relatively high in the feature space, this

pair should be mapped apart to avoid mixing problems. By

taking both the distribution of heteropoints and the distance

into account, HDDA shows more effective results compared

to the state-of-the-art methods.

Index Terms— Dimensionality Reduction

1. INTRODUCTION

The concept of graph embedding [1] has been utilized in

many dimensionality reduction methods, such as princi-

pal component analysis (PCA), linear discriminant analysis

(LDA) [2], locality preserving projection (LPP) [3], linear

discriminant embedding (LDE) [4], marginal Fisher analysis

(MFA) [1], and local Fisher dicriminant analysis (LFDA) [5].

Among these methods, many supervised approaches [1][4][5]

assign larger values for stronger relations between intraclass

nearest-neighbors in order to preserve the local structure in

the original space. The strict within-class multimodal strategy

works well in many cases. Nevertheless, when multimodal-

ity contradicts between-class separation, the latter should be

considered as the priority. As shown in Fig. 1, between-class

discrimination can be achieved by mapping far-apart within-

class samples together, while strictly preserving intraclass

multimodalities will result in mixing problems.

To solve this problem, we propose Hypersphere Distri-
bution Discriminant Analysis (HDDA), which automati-
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cally determines whether or not within-class multimodality

should be preserved based on the heteropoints distribution

in the interference space of every within-class pair. The

interference space of a pair is defined by constructing two

hyperspheres with radii that are equal to the distance between

the pair. If the number of heteropoints in the interference

space is relatively large, we should strictly map this within-

class pair separately to avoid possible mixing problems. The

distance between the pair is also considered since two sam-

ples are more similar if they are closer to each other. HDDA

inherits the advantages from other linear graph-embedded

dimensionality reduction methods. It can automatically bal-

ance between within-class multimodality preservation (as

LFDA) and between-class separation (as LDA) by consider-

ing the heteropoint distribution. With all these characteristics,

HDDA arrives to the more effective dimensionality reduction

results for supervised tasks compared to the state-of-the-art

methods.

2. METHOD

2.1. The linear dimensionality reduction problem

Given a set of n data points X = [x1 · · ·xn] (xi ∈ R
d)

with corresponding class labels {yi}ni=1 = {1, · · · ,m}. Our

goal is to find an appropriate transformation matrix W =
[w1 . . .wl] ∈ R

d×l which maps X to the lower dimensional

space R
l (l < d). The data points resulted from mapping can

be denoted by Z = {zi}ni=1 where Z = WTX.

The following equations state the pointwise form of

the between (Sb) and the within (Sw) scatter matrices in

Sugiyama’s work [5].

Sw =
1

2

n∑
i,j=1

Aw
ij(xi − xj)(xi − xj)

T (1)

Sb =
1

2

n∑
i,j=1

Ab
ij(xi − xj)(xi − xj)

T (2)

where

Aw
ij =

{
Aij/nc, if yi = yj = c

0, if yi �= yj
(3)
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Fig. 1. Fig 1(a) and 1(c) show the results of LFDA. Fig 1(b)

and 1(d) show the results of HDDA. The black lines indicate

the submanifold after projection. These are the examples that

strictly preserving the within-class multimodality as LFDA

does will lead to the mixing problem.

Ab
ij =

{
Aij(1/n− 1/nc), if yi = yj = c

1/n, if yi �= yj
(4)

with Aij indicating the affinity of the within-class samples

and nc denoting the number of samples in class c. In LDA,

Aij = 1 if yi = yj , since LDA defines that every within-

class pair has equal chance to be mapped together. In LFDA,

Aij is defined as the heat kernel in order to preserve the local

structure. In our method, a new affinity matrix is generated

by considering not only the distance between every within-

class pair but also the distribution of the heteropoints in their

interference space.

2.2. The heteropoint distribution and affinity weight

A pair of within-class samples is more likely to be mapped

closer on the new manifold if the affinity between them is

higher. Using the heat kernel [5] as the affinity weight can en-

sure that multimodality is preserved. However, in some cases

(such as those shown in Fig. 1), mapping far-apart within-

class samples together can prevent them from mixing with

heteropoints. Thus, there is a trade-off between preserving

the within-class multimodality and reaching a better between-

class separation. As shown in Fig. 1(a) and 1(c), LFDA fails

to find appropriate projections in these scenarios.

Given a pair of samples xi and xj in class c, there is a line

that passes through these two points as shown in Fig. 2. If

there is a submanifold M where xi and xj are mapped close,

any data points close to the pair and the line between them

will be mapped close as well. As a result, heteropoints re-

siding close to this line would also be mapped close to this

xi xj

Si Sj

dij

Fig. 2. With these two hyperspheres, the space can be sepa-

rated into three parts

pair and lead to mixing problems. In contrast, if no such het-

eropoints exist, mapping this pair together would have less

influence on the between-class separation.

In order to determine whether a data point is close to the

within-class pair, we construct two hyperspheres Si and Sj .

Si is centered at xi, with radius dij , where dij is the Euclidean

distance between xi and xj . Sj is centered at xj , with the

radius dij . The space covered by these two hyperspheres is

defined as the interference space.

With more heteropoints located in the interference space,

mapping this within-class pair together would lead to a

greater chance for mixing problem to occur. If only few or no

heteropoints reside in the interference space, there is a smaller

chance for the mapping to violate the between-class separa-

tion rule. However, the distribution of heteropoints is also

related to the size of the hyperspheres, which is determined

by the distance between the within-class pair. Therefore, we

assign the weights of the affinity matrix based on both the dis-

tance of the within-class pair and the heteropoint distribution

rather than considering the number of heteropoints alone.

2.3. Hypersphere Distribution Discriminant Analysis

The procedure of hypersphere distribution discriminant anal-

ysis (HDDA) is described in this section. We firstly compute

the distance matrix D by finding the Euclidean norm between

each pair of samples. For xi and xj with yi = yj = c, the

number of heteropoints resided in hypersphere Si is consid-

ered by using all the xk in different classes as follows:

ni =

n∑
k=1

{(1{xk|dik<dij})(1{xk|yk �=c})} (5)

the heteropoint distribution is then defined as follows:

hij = max{ni, nj}. (6)

Using the heteropoint distribution and the distance between

the samples, we can build the new affinity matrix as follows:

Aij = (
1

1 +
dij∑

∀i,j dij

)
logn′ hij

(7)
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where n′ is the square root of the total number of heteropoints,√
n− nc. The weighting function is further discussed in Sec-

tion 3.

The transformation matrix W can be computed by solv-

ing the following optimization problem:

W = argmax[((WTSbW)−1(WTSwW))] (8)

To find the transformation matrix W, we can apply the Spec-

tral Graph Theory [6] and compute the eigenvectors and

eigenvalues for the following eigenvalue problem

XLbXTw = λXLwXTw. (9)

Here, Lb = Db−Ab and Lw = Dw −Aw where Db and Dw

are diagonal matrices with entries are column (row) sums of

Ab and Aw, i.e. Db
ii =

∑
j A

b
ji and Dw

ii =
∑

j A
w
ji.

With the optimal transformation matrix W,the linear em-

bedding is stated as follows:

xi → zi = WTxi (10)

where zi is a l-dimensional vector and W is an n× l matrix.

3. CHOICE OF AFFINITY WEIGHT

The choice of the within-class affinity weight depends on two

variables hij (the heteropoint distribution) and dij (the dis-

tance between xi and xj). The higher the number of het-

eropoints residing in the interference space (higher hij), the

lower the affinity between the within-class pair, since map-

ping the pair of points close to each other would likely cause

a mixing problem. Also, a pair is considered more similar if

they are closer in the original space (lower dij).

We set a threshold for the number of ”tolerable” hetero-

points located in the interference space. If the number of the

heteropoints exceeds the threshold n′, the pair of within-class

samples should not be mapped together in order to avoid mix-

ing with heteropoints. n′ is defined as the square root of the

total number of heteropoints,
√
n− nc. The weight in the

affinity matrix drops rapidly if hij > n′. On the other hand,

if the number of heteropoints in interference space is smaller

than the threshold value, affinity would be enhanced since

mapping these two data points together would not cause mix-

ing. Therefore, for within-class samples xi and xj , their affin-

ity is defined as (7) in Section 2.3. The function of dij is ap-

propriately chosen as a monotone decreasing function with its

value between (0, 1], which causes the affinity value to drop

down when the number of heteropoints exceeds the thresh-

old. We do not consider the heat kernel for its strengthening

the strict within-class multimodality.

4. EXPERIMENTS

4.1. 2D Data Visualization

We apply the UCI Letter Recognition Dataset [7] for our 2D

data visualization experiments. This dataset consists of sam-
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Fig. 3. The results of 2D data visualization of the letter recog-

nition dataset applying HDDA and LFDA. These results show

that with the justification of the multimodality by detecting

heteropoints in the interference space; a better between-class

separation can be achieved.

ples with 16 features in 26 classes (’A’-’Z’). In the experi-

ment, three groups of testing samples, including some easily

confused combinations, were chosen. These combinations are

{A,B,C}, {H,M,N} and {U,V}. Many hand-written letters

have in-class multimodality. However, arbitrarily preserving

the multimodality can sometimes lead to undesired results.

The results in Fig. 3 show that HDDA performs better than

LFDA when applied to 2D data visualization problems.

4.2. Classification results of IDA datasets

We also compare the classification results of the IDA data

sets [8] of HDDA and those in Sugiyama’s work [5]. Table

1 shows the average error rates of HDDA and of the state-of-

the-art methods when using 1NN classifier. The embedding

dimensionality of HDDA is chosen by 5-fold cross-validation.

We divide these datasets into three groups based on the per-

formance of LDA and LPP.

Group 1 includes the datasets in which LDA outperforms
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LPP, indicating that arbitrarily preservation of the multi-

modality of these datasets does not provide a better result.

HDDA outperforms LFDA and shows comparable or slightly

better results to LDA. The result indicates that HDDA inherits

the characteristic of LDA, which appropriately maps within-

class samples together to achieve better recognition rates.

LFDA, on the other hand, strictly preserves the within-class

multimodality and shows less accurate results in those cases.

Group 2 includes the datasets in which LPP performs bet-

ter; however, the datasets do not contain strong multimodal-

ity. For these datasets, HDDA performs better results than

LDA does, since it gives the priority to detecting appropri-

ate multimodalities over mapping all the within-class data to-

gether. HDDA also shows comparable (if not better) results

compared to LFDA in most of datasets in this group, as it ap-

plies the between-class separation concepts proposed in LDA.

Group 3 contains the datasets with the strong within-

class multimodality. HDDA does not perform as well as

LFDA within these data sets, as these datasets already have

very strong multimodality. Thus, arbitrarily preserving mul-

timodality would be the best choice for seeking the best

projection space. In the thyroid datasets, the direct inhibition

of the heteropoints between the within-class pairs exists only

in a small portion of those pairs.

Unlike LDA and LPP, HDDA neither strictly preserves

nor rejects the within-class multimodality. Instead, HDDA

judges when to apply the within-class multimodality to

achieve better classification results. In unsupervised sce-

narios, LPP offers adequate results since no class information

is provided. However, this projection rule cannot be strictly

followed in supervised scenarios. With the exception for

datasets with strong multimodality and imbalanced number

of data in different classes, HDDA shows better results in

most cases than does the state of art methods.

5. CONCLUSIONS

In this paper, we proposed a novel linear supervised dimen-

sionality reduction method called Hypersphere Distribution

Discriminant Analysis (HDDA). The major advantage of our

approach is that the within-class multimodality is preserved

when it can lead to better between-class separation, instead

of applying it strictly. By constructing the distribution ma-

trix of the heteropoints using hyperspheres, we can determine

if mapping a within-class pair together would cause possi-

ble mixing problems. The new within-class affinity is as-

signed based on the heteropoint distribution and the distance

between the pair. Performance improvement of HDDA over

the state-of-the-art methods is demonstrated through several

experiments.

Table 1. Means of the error rates applying HDDA, LFDA,

LPP, PCA and LDA to IDA datasets. The superscript follow-

ing the dataset name indicates the the group that the dataset

belongs to.

Data set HDDA LFDA LPP PCA LDA

breast-cancer1 32.3 34.7 33.5 34.5 32.9

diabetes1 30.3 32.0 31.5 31.2 30.6

flare-solar1 38.6 39.2 39.2 39.1 39.0

german1 29.6 29.9 30.7 30.2 30.5

heart2 20.8 21.9 23.3 24.3 24.0

image2 4.7 3.2 3.6 3.4 6.5

ringnorm2 17.9 21.1 20.6 21.6 31.2

splice2 16.3 16.9 23.2 22.6 33.7

thyroid3 5.7 4.6 4.2 4.9 5.3

twonorm2 3.4 3.5 3.7 3.6 5.0

waveform3 12.8 12.5 12.4 12.7 17.6
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