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ABSTRACT

We present a decentralized adaptive filtering algorithm in a

clustered network of agents. Agents receive payoffs partly

due to performing localized tasks in clusters and partly due to

strategic interaction with agents outside clusters. Each agent

is only aware of the actions of others within its cluster and is

oblivious to the actions, or even existence, of agents outside

the cluster. We show that the global behavior of the network

converges to the set of correlated ε-equilibria if the agents

follow the proposed algorithm. Thus simple behavior by in-

dividual agents can result in sophisticated global behavior.

Index Terms— Adaptive filtering, correlated equilib-

rium, differential inclusions, stochastic approximation.

1. INTRODUCTION

Consider a network of agents forming multiple non-overlapping

clusters. Each cluster is characterized by a subset of agents

which perform a particular localized task and share informa-

tion of their actions with each other. However, the action

profile of each cluster cannot be observed by other clusters

and agents outside the cluster. Agents repeatedly take actions

to which there corresponds two payoffs: i) local payoff, due

to performing tasks allocated to the cluster, ii) global pay-

off, due to global interaction with agents outside the cluster.

Agents continuously update their strategies – via a non-linear

adaptive filtering algorithm – to maximize their expected pay-

off based on the realized payoffs in the past and observations

of the action profile of cluster members. The question we

pose in this paper is: Given this simple local behavior of in-

dividual agents, can the clustered network of agents achieve

sophisticated global behavior? Similar problem have been

studied in the Economics literature. For seminal works, the

interested reader is referred to [1, 2].

Main Results: In [2], the authors consider a network

model where no information about the action profiles are

disclosed and agents only realize their payoffs once they take

action. They propose a regret-based reinforcement learning

algorithm whereby agents build statistics of their past experi-

ence and infer how their payoff would have improved based

only on the realized payoffs so far. The model in this paper

differs as it incorporates cluster structure where actions are

only locally shared. That is, some agents have no information

about the actions and payoffs of other agents, who in fact may

be oblivious to their existence, and other agents form clusters

where their actions are revealed to the cluster members. The

main result of this paper is that if every agent follows the

proposed adaptive filtering algorithm, the global behavior of

the network converges to the set of correlated ε-equilibria [3].

In addition, we show (via simulations) that, taking advantage

of the excess information shared within clusters, faster con-

vergence to the set of correlated ε-equilibria can be achieved.

Correlated equilibrium is a generalization of the Nash

equilibrium and describes a condition of competitive opti-

mality. It is arguably best suited for decentralized adaptive

learning in multi-agent systems as coordination among agents

is directly taken into account. In fact, the common history

of actions (partially observed by the agents) serves as the

coordination device. Each agent’s payoff is a function of

others’ action profile whether or not the agent is capable of

observing it. Therefore, agents indirectly acquire the coordi-

nation signal through the realized payoffs. This coordination

leads to potentially higher payoffs than if agents take actions

independently (as required by Nash equilibrium).

Context: The motivation for such formulation stems from

sensor networks. Consider a multiple target tracking sce-

nario in an unattended ground sensor network [4]. Depending

on their locations, sensors form clusters each responsible for

tracking a particular target. Sensors receive two payoffs: i)

local payoff, based on the importance and accuracy of the in-

formation provided about the local phenomena, ii) global pay-

off, for communicating the collected data to the sink through

the channel, which is globally shared amongst all sensors.

Consideration of the potential local interaction among sensors

leads to a more realistic modeling, hence, more sophisticated

design of reconfigurable networked sensors.

2. ADAPTIVE FILTERING ALGORITHM FOR
CONSENSUS FORMATION IN ACTIONS

2.1. Multi-agent Network Model

Let L = {1, 2, . . . , L} denote the set of agents. Each agent

l is characterized by a set of actions Al = {1, . . . , Al} and a

payoff function U l : A → R, where A = ×l∈LAl represents

the set of L-tuple of joint action profiles. A generic element

ofA is denoted by a = (a1, . . . , aL) and, for any agent l, can
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be rearranged as (al,a−l), where a−l ∈ ×l′ �=lAl′ .

Agents are partitioned into non-overlapping clusters Ck ⊂
L, k = 1, . . . ,K. Isolated agents will be formulated as sin-

gleton clusters. Time is discrete n = 1, 2, . . .. Each agent l
takes an action aln at time instant n and receives a payoff U l

n.

We make the cluster monitoring assumption, that is,

l, l′ ∈ Ck iff l knows al
′
n and l′ knows aln. (1)

The payoff function for each agent l is formulated as

U l
(
al,a−l

)
= U l

loc(a
l,aC

−l
k ) + U l

glob(a
l,a−Ck). (2)

Here, aC
−l
k and a−Ck denote the action profile of cluster Ck

(to which agent l belongs) excluding agent l and the action

profile of all agents excluding cluster Ck, respectively. In

addition, U l
loc(a

l,aC
−l
k ) = 0 if cluster Ck is singleton, i.e.,

C−l
k = ∅. Agents know Uloc (·) and, knowing a

C−l
k

n and their

chosen action aln, are capable of computing their local stage

payoff. Knowing the overall realized payoff U l
n, each agent

can then compute its realized global payoff:

U l
glob,n = U l

n − U l
loc(a

l
n,a

C−l
k

n ), (3)

Note that agents cannot compute U l
glob(a

l
n,a

−Ck
n ) as they do

not acquire a−Ck
n .

2.2. Regret-based Adaptive Filtering with Partial Local
Information

Each agent l generates two average regret matrices and up-

dates them over time: (i) ᾱl
Al×Al , which records average

local-regrets, and (ii) β̄
l
Al×Al , which is an unbiased estima-

tor of the average global-regrets. Each element ᾱl
n (i, j),

i, j ∈ Al, gives the time-average regret (in terms of gains and

losses in local payoff values) had the agent selected action j
every time it took action i in the past. Formally,

ᾱl
n (i, j) =

1

n
× (4)

n∑
τ=1

[
U l

loc

(
j, a

C−l
k

τ

)− U l
loc

(
alτ ,a

C−l
k

τ

)]
I{alτ = i},

where I{·} denotes the indicator function.

Agents, however, do not observe/receive the action pro-

file of agents outside cluster, hence, are unable to perform the

thought experiment to compute U l
glob

(
j, a−Ck

τ

)
as in (4). This

paper adopts the approach in [2] to formulate an unbiased es-

timator of the average global-regrets. Formally, each element

β̄l
n (i, j), i, j ∈ Al, will be defined as:

β̄l
n (i, j) =

1

n
× (5)

n∑
τ=1

σl
τ (i)

σl
τ (j)

U l
glob,τ I{alτ = j} − U l

glob,τ I{alτ = i},

where σl
τ =

(
σl
τ (i)

)
i∈Al denotes the randomized strategy

according to which agent l picked action at period τ . Intu-

itively speaking, the normalization factor σl
τ (i) /σ

l
τ (j) in (5)

makes the length of periods, when actions i and j have been

selected, comparable.

Each agent then combines these measures to update

its randomized strategy for the following period. Positive

overall-regrets αl
n(i, j) + βl

n(i, j) imply the opportunity to

achieve higher payoffs by switching from action i to action j.
The more positive the regret for not choosing an action, the

higher is the probability that the agent picks that action.

Define |x|+ = max{0, x} and let 0 < δ < 1. At each

period, with probability 1− δ, agent l chooses its consecutive

action according to |ᾱl
n(i, j)+β̄

l
n(i, j)|+. With the remaining

probability δ, it randomizes over the action set Al according

to a uniform distribution. This can be interpreted as “explo-

ration” which is essential as agents continuously learn their

global payoff functions. Exploration forces all actions to be

chosen with a minimum frequency, hence, rules out actions

being rarely chosen.

The regret-based adaptive filtering algorithm can then be

summarized as follows:

Algorithm 1:

0) Initialization: Set 0 < δ < 1. Initialize ψl
0 (i) = 1/|Al|,

for all i ∈ Al, ᾱl
0 = 0Al×Al and β̄

l
0 = 0Al×Al .

For n = 1, 2, . . . repeat the following steps:

1) Strategy Update and Action Selection: Select action

aln+1 = i according to the following distribution

σl
n+1 (i) = (1− δ)μl

n (i) + δ/Al, (6)

where μl
n denotes the stationary distribution of the following

transition probability matrix

ψl
n(i) =

⎧⎨
⎩

1
ξl
|ᾱl

n

(
aln−1, i

)
+ β̄l

n

(
aln−1, i

) |+, i �= aln−1,

1−∑
j∈Al

j �=i

ψl
n (j) , i = aln−1.

(7)

Here, ξl is chosen such that ξl >
∑

k∈Al\{al
n−1} ψ

l
n (k).

2) Local Information Exchange: Agent l: i) broadcasts

aln+1 to the cluster members, ii) receives actions of cluster

members and forms the profile a
C−l
k

n+1.

3) Regret Update:
Step 1: Local Regret

ᾱl
n+1(i, j) = ᾱl

n(i, j) + εn+1× (8)([
U l

loc

(
j, a

C−l
k

τ

)− U l
loc

(
alτ ,a

C−l
k

τ

)]
I{alτ = i} − ᾱl

n(i, j)

)
.

Step 2: Global Regret

β̄l
n+1(i, j) = β̄l

n(i, j) + εn+1× (9)([
σl
τ (i)

σl
τ (j)

U l
glob,τ I{alτ = j} − U l

glob,τ I{alτ = i}
]
− β̄l

n(i, j)

)
.

Here, the step size is selected as εn = 1/(n + 1) (in static

multi-agent system models) or εn = ε̄, 0 < ε̄� 1, (in slowly

time-varying multi-agent networks).

4) Recursion: Set n← n+ 1 and go to Step 1.

2042



Remarks:

1) Interpretation of ξl in (7): The normalization factor ξl

is to guarantee that probability distribution ψl
n remains valid.

Higher ξl lowers the probability of switching actions, hence,

can be viewed as an inertia parameter [1]. To avoid com-

puting ξl in each decision period, one can fix ξl > 2Al ·
maxal,a−l |U l(al,a−l)|. We should emphasize that the rate

of convergence is closely related to ξl.
2) Slowly Time-variant Multi-agent Network: The multi-

agent system model may evolve over time due to: i) changes

of agents’ incentives (payoff functions), ii) changes in cluster

membership, and iii) agents joining/disjoining the network.

To keep agents responsive to these changes, a constant step-

size εn = ε̄ is required in (8) and (9). Algorithm 1 cannot

respond to multiple successive changes as agents’ strategies

are functions of the time-average regrets.

3) Better-reply Adaptive Procedure: The strategy in

Step 1 reinforces all plausible actions with positive prob-

abilities. Hence, the behavior of the agents is non-fully

rational (better-reply strategy) as compared to a sophisti-

cated decision-maker who takes the most plausible action

(best-reply) given its limited conception of the outside world.

3. GLOBAL BEHAVIOR AND CONVERGENCE
ANALYSIS

Assume each agent employs Algorithm 1 to select action for

the next period. The global behavior for the network of agents

is defines as the (discounted) empirical frequency of the joint

action profiles:

z̄n =

{ 1
n

∑
τ≤n eaτ , if εn = 1

n ,

ε̄
∑

τ≤n (1− ε̄)n−τ
eaτ , if εn = ε̄.

(10)

Here, eaτ denotes the
∏

l∈L |Al| dimensional unit vector in

the set of Cartesian product of agents’ joint actions with the

element corresponding to aτ being equal to one. The sec-

ond line in (10) is a discounted version of the first line and

will be used in slowly evolving multi-agent systems. Given

z̄n, the total expected payoff accrued by the network can be

straightforwardly computed. Note that z̄n is a network “diag-

nostic” and is only used for the convergence analysis of Al-

gorithm 1– it does not need to be computed by the network.

That being said, a network controller can monitor z̄n, e.g.,

in a sensor network, and use it to adjust the price of sensors,

thereby changing the equilibrium set in novel ways.

The main result of this paper is that z̄n converges to the set

of correlated ε-equilibrium. Before proceeding with the for-

mal statement, we define the set of correlated ε-equilibrium.

Definition 3.1 Let π denote a joint distribution on A, where
π (a) ≥ 0 for all a ∈ A and

∑
a∈A π (a) = 1. The set of

correlated ε-equilibrium, denoted by Cε, is the convex set [3]

Cε =
{
π :

∑
a−l

πl(i,a−l)× (11)

[
U l(j, a−l)− U l(i,a−l)

] ≤ ε, ∀i, j ∈ Al, ∀l ∈ L
}
.

For ε = 0 in (11), C0 is called the set of correlated equilibria.

In (11), πl
(
i,a−l

)
denotes the probability of agent l choos-

ing action i and the rest playing a−l. Dividing (11) by∑
a−l∈A−l π

(
i,a−l

)
, agent l can compute a posteriori dis-

tribution π
(
a−l|i), hence, evaluate an expected payoff for

each action i ∈ Al. Considering ε � 1, Definition 3.1 sim-

ply states that no agent is better off by unilaterally deviating

the recommended signal a chosen randomly according to dis-

tribution π. Hence, reaching a correlated equilibrium can be

viewed as consensus formation in strategy amongst agents.

We now proceed to state the main theorem of this paper.

Theorem 3.1 Suppose each agent l ∈ L deploys the adaptive
filter in Algorithm 1 and updates strategy according to (6),
where μl

n represents the stationary distribution of (7), i.e.,∑
j∈Al\{i}

μl
n(j) ·

∣∣ᾱl
n(j, i) + β̄l

n(j, i)
∣∣+ = (12)

μl
n(i) ·

∑
j∈Al\{i}

∣∣ᾱl
n(i, j) + β̄l

n(i, j)
∣∣+ .

Then, for each ε > 0, there exists δ̂ (ε) such that if δ <

δ̂ (ε) in Algorithm 1, the global behavior z̄n converges almost
surely (for εn = 1/n) to the set of correlated ε-equilibria in
the following sense:

z̄n
a.s.−−→ Cε as n→∞ iff (13)

d (z̄n, Ce) = inf
z∈Ce

|z̄n − z| a.s.−−→ 0 as n→∞.

For constant step-size εn = ε, z̄n converges weakly to Cε.

The above theorem implies that the stochastic process z̄n en-

ters and stays in the ε-neighborhood of Cε forever with proba-

bility one. In other words, for any ε > 0, there existsN (ε) >
0 with probability one such that for n > N (ε), one can find

a correlated equilibrium π at the most ε-distance of z̄n.

Sketch of the Proof: The proof follows from averag-

ing theory [5] and Lyapunov stability of differential inclu-

sions [6]. The main steps to prove Theorem 3.1 are as follows:

1) Trajectories of the piecewise constant continuous-time in-

terpolations of the stochastic processes ᾱk
n and β̄

k
n converges

almost surely (for εn = 1/n) or weakly (for εn = ε) to the

global attractors of the associated continuous-time system of

inter-connected differential inclusions: [See (14), shown at

the bottom of the page]. In (14),

U l
loc(a

l,νC−l
k ) =

∫
AC−l

k

U l
loc(a

l,aC
−l
k )dνC

−l
k (aC

−l
k ), (15)

⎧⎨
⎩

dᾱl(i,j)
dt ∈

{[
U l

loc

(
j,νC−l

k

)− U l
loc

(
i,νC−l

k

)]
σl (i) ;νC−l

k ∈ ΔAC−l
k

}
− ᾱl(i, j),

dβ̄l(i,j)
dt ∈

{[
U l

glob

(
j,ν−Ck

)− U l
glob

(
i,ν−Ck

) ]
σl (i) ;ν−Ck ∈ ΔA−Ck

}
− β̄l(i, j),

(14)
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U l
glob(a

l,ν−Ck) =

∫
A−Ck

U l
glob(a

l,a−Ck)dν−Ck(a−Ck).

(16)

In addition, ΔAC−l
k and ΔA−Ck denote simplexes of prob-

ability measures over AC−l
k and A−Ck , respectively. 2) The

system of inter-connected differential inclusions (14) is Lya-

punov stable and the set of global attractors is characterized

by positive combined-regrets
∣∣αl (i, j) + βl (i, j)

∣∣+ being

confined to an ε-distance of R−, for all i, j ∈ Al. Hence, if

every agent employs the regret-based adaptive filtering (Algo-

rithm 1), ∀ε ≥ 0, there exists δ̂(ε) ≥ 0 such that if δ ≤ δ̂(ε),
for all agents l ∈ L:

lim sup
n→∞

∣∣ᾱl
n(i, j) + β̄l

n(i, j)
∣∣+ ≤ ε w.p.1, ∀i, j ∈ Al. (17)

3) The global behavior z̄n converges to Cε if and only if (17)

is satisfied.

4. NUMERICAL EXAMPLE

In this section, we study a small hypothetical multi-agent sys-

tem comprising three agentsL = {l1, l2, l3}. Agents l1 and l2
are allocated the same task, hence, form cluster C = {l1, l2}.
Agent l3 forms a singleton cluster, hence, neither observes

the action profile of C, nor does it disclose its action infor-

mation to l1 and l2. Agents l1 and l2 take action from the

same action set Al1 = Al2 = {a1, a2}. Agent l3, due to per-

forming a different task, chooses from a different action set

Al3 = {b1, b2}. Table 1 gives the payoffs to the agents for

taking a particular action. Each element (x, y, z) in the table

represents the payoff to l1, l2 and l3, respectively, correspond-

ing to the particular action profile taken by agents. The set of

correlated equilibrium is singleton (a pure strategy), where

probability one is assigned to (a2, a2, b1) and zero to others.

Here, we set εn = 1/n and δ = 0.1. Figure 1 illustrates

the global behavior z̄n averaged over 50 different runs of Al-

gorithm 1 and compares its performance with the reinforce-

ment learning algorithm in [2]. Note that Theorem 3.1 proves

convergence to the set of correlated ε-equilibrium. Therefore,

although z̄n(a2, a2, b1) increases with the number of itera-

tions, it could only reach an ε-distance of one depending on

the value of δ in Algorithm 1. Similarly, z̄n decreases for

other combination of action profiles. However, they are al-

ways played with small positive frequencies. Figure 1 numer-

ically verifies that Algorithm 1 converges faster to the set of

correlated ε-equilibrium. As can be seen, in a certain num-

ber of iterations, z̄n gets closer to the the probability values

allocated to joint action profiles in correlated equilibrium.

5. CONCLUSION

we proposed a simple decentralized adaptive filtering algo-

rithm to form consensus in actions in a clustered network

of agents. Agents form clusters to perform localized tasks

and share their action information with cluster members.

It is proved that simple non-fully rational local behavior

by individual agents can lead to rational global behavior

Table 1: Agents’ Payoff Matrix

Local:

l2 : a1 l2 : a2

l1 : a1 (3, 5) (2, 3)

l1 : a2 (3, 3) (5, 4)

Global:

l2 : a1 l2 : a2

l1 : a1 (1, 4, 1) (2, 1, 3)

l1 : a2 (2, 1, 3) (3, 4, 4)

l2 : a1 l2 : a2

(2, 2, 3) (1, 3, 1)

(3, 3, 1) (2, 2, 3)

l3 : b1 l3 : b2

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Global Behavior: Empirical Frequency of Joint Play

Iteration Number n
z̄

n

z̄n(a2, a1, b1)

z̄n(a2, a1, b2)

z̄n(a2, a2, b1)

z̄n(a2, a2, b2)

Fig. 1: Global behavior z̄n: i) Solid lines represent results from Al-

gorithm 1, ii) dashed lines represent results from the reinforcement

learning algorithm in [2].

in the network. Agents in clusters can utilize the excess

shared/observed information to achieve faster coordination.
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