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ABSTRACT

Nonnegative matrix factorization (NMF) is widely used in im-

age analysis. However, most images contain noises and out-

liers. Thus a robust version of NMF is needed. We propose

a novel NMF using a robust error function which smoothly

interpolates between the least squares at small errors and L1-

norm at large errors. An efficient computational algorithm is

derived with rigorous convergence analysis. Extensive exper-

iments are made on six image datasets to show the effective-

ness of proposed approach. Robust NMF consistently pro-

vides better reconstructed images, and better clustering re-

sults as compared to standard NMF.

Index Terms— NMF, robust, error function, clustering

1. INTRODUCTION
Nonnegative Matrix Factorization (NMF) has been popularly

studied in data mining and machine learning areas since the

initial work of Lee and Seung [1]. As originally proposed

method for finding matrix factors with parts-of-whole inter-

pretations, NMF has been applied to a number of applied

areas, environmetrics, chemometrics [2], pattern recognition,

multimedia data analysis and text mining. Algorithmic exten-

sions of NMF have been developed to accommodate a variety

of objective functions and a variety of data analysis problems,

including classification, collaborative filtering, etc. One of the

key features of NMF is its clustering capabilities. It is shown

[3] that NMF essentially solves a matrix clustering problem.

Standard NMF uses the least square error function which

is well-known to be non-robust w.r.t. noises and outliers [4,

5]. On the other hand, many real life data contain noises and

outliers [6]. For this reason, a robust NMF model is needed.

We analyze the error models and propose a characterization

of desired error function, which interpolates between the least

squares for smaller white noises and L1 norm (absolute value)

for large errors. We propose a specific error function with the

desired behaviors at both limits. We use this robust error func-

tion for NMF and derive an efficient computational algorithm

and provide rigorous analysis on its convergence. Extensive

experiments on six image datasets demonstrate the usefulness

of robust NMF on image analysis and image clustering.

2. STANDARD NMF REVISIT
Given input data vectors X = (x1, · · · , xn), where xi ∈ �p

represents an image (a vector of image features or linearized

pixels). The standard NMF is defined as

min
F,G

‖X − FG‖2F , s.t. F ≥ 0, G ≥ 0, (1)

where ‖X‖2F =
∑

ij X
2
ij is the Frobenious form of a matrix.

One of the most important drawback of the standard NMF

is that it is prone to large derivations (outliers and noises at

image level), because the error for both data features (index

j) and data vector (index i) are squared. Thus a few noisy

features or a few outliers with large errors easily dominate

the objection function because the errors are squared. Below,

we first discuss Gaussian white noise and large deviations and

then propose a error function which has the correct behaviors

in both sides.

3. STATISTICAL DISTRIBUTIONS FOR WHITE
NOISE AND LARGE DERIVATIONS

For simplicity, we first consider the case where the observa-

tions (x1, · · · , xn) are scalars. Observed value xi can be con-

taminated by noisy features and outliers, i.e., xi = θ + εi,
where θ is the unobservable true value, and εi is the additive

noise. Different distributions of εi define different error mod-

els.

The most common noise is white noise, which follows the

zero-mean normal distribution with standard deviation of σ,

p(xi) ∼ exp{− (xi − θ)2

2σ2
}, (2)

and the error function (negative log-likelihood) is

−log[Πn
i=1p(xi)] ∝

n∑
i=1

(xi − θ)2. (3)

White noises generally have small magnitudes. Outliers

and large deviations are usually modeled by the Laplacian

distribution with zero mean,

p(xi) ∼ exp{−|xi − θ|
σ

}, (4)

and the error function (negative log-likelihood) is

−log[Πn
i=1p(x)] ∝

n∑
i=1

|xi − θ|. (5)
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In real life data, smaller and frequent white noises are

usually mixed with infrequent but large rare deviations. This

suggests a good error function should cover both the smaller

white noise and the larger Laplacian-type deviations, i.e., f(·)
should have the following desired behaviors on residue r =
|x− θ|,

f(r) →
{

r2 if r 	 σ,
r if r 
 σ,

(6)

where σ is the fixed quantity close to the variance of x. This

characterization of the error function is a key point of this pa-

per: the error function should smoothly interpolate between

the least square function for small errors and L1-norm for

large errors.

3.1. A smooth robust error function

In this paper, we propose a novel robust error function Γ(·) on

residue r which has the correct characteristics in both limits,

Γ(r) = σ
√

r2 + σ2 − σ2. (7)

It is easy to check that this function has the right asymptotic

behaviors:

Γ(r) →
{

1
2r

2 if r 	 σ,
σr − σ2 if r 
 σ.

(8)

We note there exist other error functions which take account

of these considerations. The most well-know one is Huber

M-estimator [7]:

H(r) =

{
1
2r

2 if r ≤ σ,
σr − 1

2σ
2 if r > σ,

(9)

where σ is a positive number. Huber function is fairly close to

Γ(·) function, except that H(·) consists of two smooth func-

tion fused together in an ad hoc way while Γ(·) is a single
smooth twice differentiable function. Computationally, H(·)
must test the range condition; such a branching operation typ-

ically takes hundreds of CPU clock cycles, while add, multi-
ply take only 1-2 clock cycles. Thus computationally, Γ(·)
function is much faster than H(·). Another robust function is

the Beaton-Tukey function

FBT (r) =

{
1
6σ

2[1−
(
1−

(
r
σ

)2)3

] if r ≤ σ,
1
6σ

2 if r > σ.
(10)

A somehow similar error function is the Cauchy function:

C(r) =
σ2

2
log[1 + (

r

σ
)2]. (11)

At small r, both Beaton-Tukey and Cauchy functions ap-

proach r2/2, same as Γ(·), H(·). At large r, however, both

Beaton-Tukey and Cauchy functions grow much slower than

linear growth of Γ(·), H(·).

3.2. Error function for vector data

In above discussions, xi are assumed to be scalar observa-

tions. Many data come in as vector data, say, a p-dimensional

vector data set (x1, · · · ,xn). Let ri = xi − θ be the residue

of xi. We propose two forms of robust error function.

(1) The element-wise error function

Γ(r) =

p∑
j=1

σ(
√

r2j + σ2 − σ), (12)

where rj is the j-th component (element) of vector r.

(2) The q-norm robust function

Γq(r) = Γ(‖r‖q) = σ
√
‖r‖2q + σ2 − σ2, (13)

where ‖r‖q = (
∑

j |rj |q)1/q is the Lq-norm of vector r.

Using the element-wise definition of Eq.(12), the robust

error function of the entire input data X is, Rij = |Xij−θij |,

J = Γ(R) =
n∑

i=1

p∑
j=1

σ(
√

R2
ji + σ2 − σ). (14)

We mention here that for matrix variables, besides the

standard L2 or Frobenius norm error function ‖R‖F =√∑n
i=1

∑p
j=1 R

2
ji, there are two robust error functions:

(1) the L1 error function ‖R‖1 =
∑n

i=1

∑p
j=1 Rji and (2)

the L2,1 error function ‖R‖2,1 =
∑n

i=1

√∑p
j=1 R

2
ji [8, 9].

4. ROBUST NMF USING THE SMOOTH ERROR
FUNCTION

The robust error function Eq.(14) leads to a new formulation

of NMF,

J(F,G) =
n∑

i=1

p∑
j=1

√
(X − FG)2ji + σ2, (15)

where the constant term
∑

ij σ
2 and the proportional constant

σ are both ignored. Formally, this novel NMF is formulated

as

min
F,G

J(F,G) s.t. F ≥ 0, G ≥ 0. (16)

A main contribution of this paper is to derive the following

updating algorithms

Fjk ⇐ Fjk
[X ◦WGT ]jk

[(FG) ◦WGT ]jk
, (17)

Gki ⇐ Gki
[FTX ◦W ]ki

[FT (FG) ◦W ]ki
, (18)

where W is a matrix given by

Wij =
(
(X − FG)2ij + σ2

)−1/2

, (19)
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and ◦ is the Hadamard product, i.e., elementwise product be-

tween two matrices. Here we assume Hadamard product has

higher operator precedence over regular matrix product, i.e.,

AB ◦ CD = A(B ◦ C)D.

Generally it is harder to solve this robust NMF due to its

complicated formulation. Thus it is a bit surprising that our

algorithm updating rules of Eqs.(17,18) for robust NMF is

very similar to the updating rules for standard NMF of Eq.(1).

[In fact, if we set Wij = 1, these two algorithms are iden-

tical.] Both are very simple to implement and have nearly

identical computational complexity.

4.1. Illustration on image reconstruction

As discussed above, robust NMF is most useful for noises

within each images. This is best illustrated by considering

occlusion as noises. On AT&T dataset, we add occlusions to

5 of the 10 images of each person (details are given in Sec-

tion 7). The occluded images are shown in Fig. 1.

We run robust NMF and standard NMF on the entire

dataset (400 images). We use the computed F and G to re-

construct the corresponding original images. Due to space

limit, we show only 20 images for two persons in Fig. 1.

Clearly, robust NMF results are generally better than those of

standard NMF. Many of the occluded blocks are removed in

reconstructed images from robust NMF while they remain on

the constructed images from standard NMF. For example, on

the images of second person, “glasses” in the original images

are preserved in robust NMF results while most of them are

lost in standard NMF results. Furthermore, the robust NMF

has some corrective effects. On images of the first person,

two reconstructed images (4th and 6th images from left) using

robust NMF are corrected to the proper (vertical) orientation.

5. CONVERGENCE OF THE ALGORITHM
Here we present main analysis results (detailed proofs are

skipped due to space limit). The main result is

Theorem 1. (A) Updating G using the rule of Eq.(18) while
fixing F , the objective function of Eq.(15) monotonically de-
creases. (B) Updating F using the rule of Eq.(17) while fixing
G, the objective function of Eq.(15) monotonically decreases.

Here we list two key lemmas in proving Theorem 1A for

updating G while fixing F .

Lemma 1. Let Gt be the old G [on the RHS of Eq.(18)] and
Gt+1 be the new G [on the LHS of Eq.(18)]. Under the up-
dating rule of Eq.(18), the following holds

‖X − FGt+1‖2W ≤ ‖X − FGt‖2W ,

where Wij is defined in Eq.(19) and ‖A‖2W =
∑

ij A
2
ijWij .

Lemma 2. Under the updating rule of Eq.(18), the following
holds

J(F,Gt+1)− J(F,Gt) ≤ (20)

1

2

(
‖X − FGt+1‖2W − ‖X − FGt+1‖2W

)
.

Fig. 1: Reconstruction of occluded AT&T dataset. Experi-

ment is done for all 400 images of 40 subjects. 20 images

for 2 persons are shown as 2 panels. On each panel, upper

images are original occluded images, middle images are re-

constructed from standard NMF, and lower images are recon-

structed from robust NMF.

Table 1: Detailed Description of different Data sets

Dataset # Size # Dimension # Class

AT&T 400 2576 40
MNIST 150 784 10

CMUPIE 680 1024 68
UMIST 360 644 20
YALE 1984 2016 31

Bin-alpha 1404 320 36

We can similarly prove Theorem 1B.

6. CORRECTNESS OF THE ALGORITHM
We can prove that the converged solution is the correct opti-

mal solution, i.e., the converged solution satisfies the Karush-

Kohn-Tucker condition of constrained optimization theory.

Theorem 2. At convergence, the converged solution F ∗ of
the updating rule of Eq.(17) satisfies the KKT condition of
optimization theory.

Theorem 3. At convergence, the converged solution G∗ of
the updating rule of Eq.(18) satisfies the KKT condition of
optimization theory.

7. EXPERIMENT

We use six widely used image data sets. Table 1 summarizes

the characteristics of them. For all image data sets, we use the

same raw gray level values as features in the original space

without making any changes. All of them only have non-

negative values as features. To construct the occluded data
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Table 2: Clustering Results of robust-NMF(rNMF) with NMF and

K-means on six original data sets.

Dataset Metric
Approaches

rNMF NMF K-means

AT&T
ACC 0.6792 0.6496 0.6519
NMI 0.8294 0.7945 0.8134
PUR 0.7600 0.6822 0.7021

MNIST
ACC 0.7523 0.7297 0.6872
NMI 0.7298 0.6966 0.6788
PUR 0.7687 0.7461 0.7068

UMIST
ACC 0.4973 0.4861 0.4744
NMI 0.6123 0.5869 0.6030
PUR 0.5032 0.5029 0.5185

CMUPIE
ACC 0.4278 0.4138 0.2227
NMI 0.6912 0.6557 0.5386
PUR 0.4307 0.4286 0.2429

YALE
ACC 0.2419 0.1950 0.0870
NMI 0.3179 0.2882 0.0933
PUR 0.2495 0.2082 0.0943

Bin-alpha
ACC 0.3889 0.2183 0.3342
NMI 0.4763 0.3287 0.5072
PUR 0.3946 0.2091 0.3897

Table 3: Clustering Results of robust-NMF(rNMF) with NMF and

K-means on six occluded data sets

Dataset Metric
Approaches

rNMF NMF K-means

AT&T
ACC 0.6325 0.5000 0.6237
NMI 0.7972 0.6652 0.7670
PUR 0.6650 0.6298 0.5250

MNIST
ACC 0.7613 0.7400 0.7160
NMI 0.7540 0.7307 0.6907
PUR 0.7980 0.7629 0.7253

UMIST
ACC 0.4194 0.3917 0.3623
NMI 0.5538 0.4955 0.4872
PUR 0.4417 0.4056 0.3957

CMUPIE
ACC 0.3647 0.3500 0.2097
NMI 0.6201 0.5966 0.5211
PUR 0.3838 0.3676 0.2293

YALE
ACC 0.1976 0.1598 0.0912
NMI 0.2767 0.2389 0.0970
PUR 0.2072 0.1704 0.0981

Bin-alpha
ACC 0.4295 0.1624 0.3858
NMI 0.5530 0.2891 0.5328
PUR 0.4544 0.1695 0.4163

sets, we first randomly select half of the images from each cat-

egory of each data set, and then occlude a square block with

wxw pixels(e.g., w = 10) on the selected ones. The loca-

tions of the occlusions are randomly generated. Through this

procedure, six occlusion image datasets are generated corre-

sponding to six original data sets.

7.1. Reconstruction for Image Analysis

Nonnegative matrices F and G can be used to reconstruct the

original images. As is shown in Fig. 1 on occluded AT&T

data set, we compare the reconstructed images by using F and

G from both robust NMF and NMF. It is clear to see the robust

NMF reconstructed images are much better than those from

NMF on occluded data set AT&T. We can get the same results

on other data sets no matter whether images are occluded or

not. Due to space limit, we did not show all here.

7.2. Clustering Results
We report clustering results by making a comparison with K-

means clustering and standard NMF approach. The evalua-

tion metrics we used here are clustering accuracy(ACC), nor-

malized mutual information(NMI), purity(PUR). These mea-

surements are widely used in the evaluation of different clus-

tering approaches. (Higher values of these quantities indicate

better clustering results.)

In experiments, σ is set to the median of residues com-

puted from standard PCA. We use K-means as initialization

as suggested by theoretical analysis [3]. We average 100 it-

erations of NMF, robust NMF, and K-means results to get the

average of the three metrics(ACC, NMI, PUR) for each ap-

proach and show them in Table 2(original data sets) and Ta-

ble 3(occlusion data sets). We can see that robust NMF per-

forms consistently better than standard NMF and K-means on

all data sets, including both original data sets and occluded

image data sets.

8. CONCLUSION
We propose a novel NMF using a robust error function which

smoothly interpolates between the least squares at small er-

rors and L1-norm at large errors. We derive an efficient com-

putational algorithm with rigorous convergence analysis. We

demonstrate the effectiveness of proposed approach on six

image datasets. Robust NMF consistently provides much bet-

ter reconstructed images, and also better clustering results.
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