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ABSTRACT
This paper proposes a binarization scheme for vectors of high dimen-
sion based on the recent concept of anti-sparse coding, and shows
its excellent performance for approximate nearest neighbor search.
Unlike other binarization schemes, this framework allows, up to a
scaling factor, the explicit reconstruction from the binary representa-
tion of the original vector. The paper also shows that random projec-
tions which are used in Locality Sensitive Hashing algorithms, are
significantly outperformed by regular frames for both synthetic and
real data if the number of bits exceeds the vector dimensionality, i.e.,
when high precision is required.

Index Terms— sparse coding, spread representations, approxi-
mate neighbors search, Hamming embedding

1. INTRODUCTION

This paper addresses the problem of approximate nearest neighbor
(ANN) search in high dimensional spaces. Given a query vector, the
objective is to find, in a collection of vectors, those which are the
closest to the query with respect to a given distance function. We fo-
cus on the Euclidean distance in this paper. This problem has a very
high practical interest, since matching the descriptors representing
the media is the most consuming operation of most state-of-the-art
audio [1], image [2] and video [3] indexing techniques. There is a
large body of literature on techniques whose aim is the optimization
of the trade-off between retrieval time and complexity.

We are interested by the techniques that regard the memory us-
age of the index as a major criterion. This is compulsory when con-
sidering large datasets including dozen millions to billions of vec-
tors [4, 5, 2, 6], because the indexed representation must fit in mem-
ory to avoid costly hard-drive accesses. One popular way is to use
a Hamming Embedding function that maps the real vectors into bi-
nary vectors [4, 5, 2]: Binary vectors are compact, and searching
the Hamming space is efficient (XOR operation and bit count) even
if the comparison is exhaustive between the binary query and the
database vectors. An extension to these techniques is the asymmet-
ric scheme [7, 8] which limits the approximation done on the query,
leading to better results for a slightly higher complexity.

We propose to address the ANN search problem with an anti-
sparse solution based on the design of spread representations re-
cently proposed by Fuchs [9]. Sparse coding has received in the last
decade a huge attention from both theoretical and practical points
of view. Its objective is to represent a vector in a higher dimen-
sional space with a very limited number of non-zeros components.
Anti-sparse coding has the opposite properties. It offers a robust
representation of a vector in a higher dimensional space with all the
components sharing evenly the information.
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Sparse and anti-sparse coding admits a common formulation.
The algorithm proposed by Fuchs [9] is indeed similar to path-
following methods based on continuation techniques like [10]. The
anti-sparse problem considers a �∞ penalization term where the
sparse problem usually considers the �1 norm. The penalization in
‖x‖∞ limits the range of the coefficients which in turn tend to ‘stick’
their value to ±‖x‖∞ [9]. As a result, the anti-sparse approximation
offers a natural binarization method.

Most importantly and in contrast to other Hamming Embedding
techniques, the binarized vector allows an explicit and reliable re-
construction of the original database vector. This reconstruction is
very useful to refine the search. First, the comparison of the Ham-
ming distances between the binary representations identifies some
potential nearest neighbors. Second, this list is refined by computing
the Euclidean distances between the query and the reconstructions
of the database vectors.

We also provide a Matlab package to reproduce the analysis
comparisons reported in this paper1. The paper is organized as fol-
lows. Section 2 introduces the anti-sparse coding framework. Sec-
tion 3 describes the corresponding ANN search method which is
evaluated in Section 4 on both synthetic and real data.

2. SPREAD REPRESENTATIONS

This section briefly describes the anti-sparse coding of [9]. We first
introduce the objective function and provide the guidelines of the al-
gorithm giving the spread representation of a given input real vector.

Let A = [a1| . . . |am] be a d × m (d < m) full rank matrix.
For any y ∈ R

d, the system Ax = y admits an infinite number
of solutions. To single out a unique solution, one add a constraint
as for instance seeking a minimal norm solution. Whereas the case
of the Euclidean norm is trivial, and the case of the �1-norm stems
in the vast literature of sparse representation, Fuchs recently studied
the case of the �∞-norm. Formally, the problem is:

x� = min
x:Ax=y

‖x‖∞, (1)

with ‖x‖∞ = maxi∈{1,...,m} |xi|. Interestingly, by minimizing the
range of the components, m − d + 1 of them are stuck to the limit,
ie. xi = ±‖x‖∞ (a proof will be presented in a journal version).
Fuchs also exhibits an efficient way to solve (1). He proposes to
solve the series of simpler problems x�

h = minx∈Rm Jh(x) with
Jh(x) = ‖Ax− y‖22/2 + h‖x‖∞ for some decreasing values of h.
As h → 0, x�

h → x�.

The reader may refer to the simple Matlab implementation we
provide for an algorithmic presentation of the method.

1http://gforge.inria.fr/projects/antisparse
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2.1. The sub-differential set

For a fixed h, Jh is not differentiable due to ‖.‖∞. Therefore,
we need to work with sub-differential sets. The sub-differential set
∂f(x) of function f at x is the set of gradients v s.t. f(x′)−f(x) ≥
v�(x′ − x), ∀x′ ∈ R

m. For f ≡ ‖.‖∞, we have:

∂f(0) = {v ∈ R
m : ‖v‖1 ≤ 1}, (2)

∂f(x) = {v ∈ R
m : ‖v‖1 = 1, (3)

vixi ≥ 0 if |xi| = ‖x‖∞,

vi = 0 else} , for x 	= 0

Since Jh is convex, x�
h is solution iff 0 belongs to the sub-differential

set ∂Jh(x
�
h), i.e. iff there exist v ∈ ∂f(x�

h) s.t.

A�(Ax�
h − y) + hv = 0 (4)

2.2. Initialization and first iteration

For h0 large enough, Jh0(x) is dominated by ‖x‖∞, and the solu-
tion writes x�

h0
= 0 and v = h−1

0 A�y ∈ ∂f(0). (2) shows that

this solution no longer holds for h < h1 with h1 = ‖A�y‖1.
For ‖x‖∞ small enough compared to the norm of A�y, Jh(x)

is dominated by ‖y‖2 − x�A�y + h‖x‖∞ whose minimizer is
x�
h = ‖x‖∞sign(A�y). In this case, ∂f(x) is the set of vectors v

s.t. sign(v) = sign(x) and ‖v‖1 = 1. Multiplying (4) by sign(v)�

on the left and substituting x∗
h, we have

h = h1 − ‖Asign(A�y)‖2‖x‖∞. (5)

This shows that i) x�
h can be a solution for h < h1, and ii) ‖x‖∞

increases as h decreases. Yet, Eq. (4) also imposes that v = ν1 −
μ1‖x‖∞, with ν1 � h−1A�y and μ1 � h−1A�Asign(A�y).
But, the condition sign(v) = sign(x) from (3) must hold, ie. no
change of sign is allowed in v. This limits ‖x‖∞ by ρi2 where
ρi = ν1,i/μ1,i and i2 = argmini:ρi>0(ρi), which in turn translates
to a lower bound h2 on h via (5).

2.3. Index partition

For the sake of simplicity, we introduce I � {1, . . . ,m}, and the

index partition Ī � {i : |xi| = ‖x‖∞} and Ĭ � I \ Ī. The

restriction of vectors and matrices to Ī (resp. Ĭ) are denoted alike
x̄ (resp. x̆). For instance, Eq. (3) translates in sign(v̄) = sign(x̄),
‖v̄‖1 = 1 and v̆ = 0. The index partition splits (4) into two parts:

Ă�
(
Ăx̆+ Āsign(v̄)‖x‖∞

)
= Ă�y (6)

Ā�
(
Ăx̆+ Āsign(v̄)‖x‖∞ − y

)
= −hv̄ (7)

For h2 ≤ h < h1, we’ve seen that x̄ = x, v̄ = v, and Ā = A. Their
‘tilde’ versions are empty. For h < h2, the index partition Ī = I
and Ĭ = ∅ can no longer hold. Indeed, when v1,i2 is null at h = h2,

the i2-th column of A moves from Ā to Ă s.t. now, Ă = [ai2 ].

2.4. General iteration

The general iteration consists i) in determining on which interval
[hk+1, hk] an index partition holds, ii) giving the expression of the
solution x�

h on this interval, iii) and proposing a new index partition

to the next iteration. Provided Ă is full rank, (6) gives

x̆ = ξk + ζk‖x‖∞, with (8)

ξk = (Ă�Ă)−1Ă�y and ζk = −(Ă�Ă)−1Āsign(v̄). (7) gives:

v̄ = νk − μk‖x‖∞, with (9)

μk = Ā�(I − Ā�Ă(Ă�Ă)−1)Āsign(v̄)/h and νk = (Ă�y −
ξk)/h. Left multiplying (7) by sign(v̄), we get:

h = ηk − υk‖x‖∞ (10)

with υk = (Āsign(v̄))�
(
I − Ă(Ă�Ă)−1Ă�

)
Āsign(v̄), and

ηk = −sign(v̄)�Ā�(Ăx̆ − y). Note that υk > 0 so that ‖x‖∞
increases when h decreases.

These equations extend a solution x�
h to the neighborhood of h.

However, we must check that this index partition is still valid as we
decrease h and ‖x‖∞ increases. Two events can break the validity:

• Like in the first iteration, a component of v̄ given in (9) be-
comes null, which breaks sign(v̄) = sign(x̄). This index

moves from Ī to Ĭ.

• A component of x̆ given in (8) sees its amplitude equalling

±‖x‖∞. This index moves from Ĭ to Ī, and the sign of this
component will be the sign of the new component of x̄.

The value of ‖x‖∞ for which one of these two events first happens
is translated in hk+1 thanks to (10).

2.5. Stopping condition and output

If the goal is to minimize Jht(x) for a specific target ht, then the
algorithm stops when hk+1 < ht. The real value of ‖x�

ht
‖∞ is

given by (10), and the components not stuck to ±‖x�
ht
‖∞ by (8).

We obtain the spread representation x of the input vector y. The
vector x has many of its components equal to ±‖x‖∞ (m − d + 1
indeed if ht → 0). An approximation of the original vector y is

ŷ = Ax. (11)

Remark: Alternately, the termination rule based on the pre-defined
target value ht may be replaced by another one, such as using a fixed
number of iterations. Empirically, this choice leads to comparable
results with respect to the approximate search problem.

3. INDEXING AND SEARCH MECHANISMS

This section describes how Hamming Embedding functions are used
for approximate search, and in particular how the anti-sparse coding
framework described in Section 2 is exploited.

3.1. Problem statement

Let Y be a dataset of n real vectors, Y = {y1, . . . ,yn}, where
yi ∈ R

d, and consider a query vector q ∈ R
d. We aim at finding

the k vectors in Y that are closest to the query, with respect to the
Euclidean distance. For the sake of exposure, we consider without
loss of generality the nearest neighbor problem, i.e., the case k = 1.
The nearest neighbor of q in Y is defined as

NN(q) = argmin
y∈Y

‖q− y‖2. (12)

The goal of approximate search is to find this nearest neighbor
with high probability and using as less resources as possible. The
performance criteria are the following:

• The quality of the search, i.e., to which extent the algorithm
is able to return the true nearest neighbor ;
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• The search efficiency, typically measured by the query time ;

• The memory usage, i.e., the number of bytes used to index a
vector yi of the database.

In our paper, we assess the search quality by the recall@R measure:
over a set of queries, we compute the proportion for which the sys-
tem returns the true nearest neighbor in the first R positions.

3.2. Approximate search with binary embeddings

A class of ANN methods is based on embedding [4, 5, 2]. The idea
is to map the input vectors to a space where the representation is
compact and the comparison is efficient. The Hamming space offers
these two desirable properties. The key problem is the design of the
embedding function e : Rd → B

m mapping the input vector y to
b = e(y) in the m-dimensional Hamming space B

m, here defined
as {−1, 1}m for the sake of exposure. Once this function is defined,
all the database vectors in Y are mapped to B

m, and so is the query
vector q. The search problem is translated into the Hamming space
based on the Hamming distance, or, equivalently:

NNb (e(q)) = argmax
y∈Y

e(q)� e(y). (13)

NNb(e(q)) is returned as the approximate NN(q).

Binarization with anti-sparse coding. Given an input vector y,
the anti-sparse coding of Sect. 2 (with fixed parameters A and ht)
produces x with many components equal to ±||x||∞. We consider a
“pre-binarized” version ẋ(y) = x/‖x‖∞, and the binarized version
e(y) = sign(x).

Hash function design The locality sensitive hashing (LSH) algo-
rithm is mainly based on random projection, though different kinds
of hash functions have been proposed for the Euclidean space [11].
Let A = [a1| . . . |am] be a d × m matrix storing the m projection
vectors. The most simple way is to take the sign of the projections:
b = sign(A�y). Note that this corresponds to the first iteration of
our algorithm (see Sect. 2.2).

We also try A as an uniform frame. A possible construction of
such a frame consists in performing a QR decomposition on a m×m
matrix. The matrix A is then composed of the d first rows of the Q
matrix, ensuring that A× A� = Id. Sect. 4 shows that such frames
significantly improve the results compared with random projections,
for both LSH and anti-sparse coding embedding methods.

3.3. Asymmetric schemes

As recently suggested in the literature, a better search quality is ob-
tained by avoiding the binarization of the query vector. Several vari-
ants are possible. We consider the simplest one derived from (13),
where the query is not binarized in the inner product. For our anti-
sparse coding scheme, this amounts to performing the search based
on the following maximization:

NNa (e(q)) = argmax
y∈Y

ẋ(q)�e(y). (14)

The estimate NNa is better than NNb. The memory usage is the
same because the vectors in the database {e(yi)} are all binarized.
For better efficiency, the search (14) is done using look-up tables
computed for the query and prior to the comparisons. Doing so,
the asymmetric scheme remains a bit slower than the pure bit-based
comparison: comparing two optimized implementations, Jain et al.
report [8] that the comparison of binary vectors is 1.7 times faster
than the corresponding asymmetric scheme on a typical computer

architecture. This is slightly slower than computing the Hamming
distances in (13). This asymmetric scheme is interesting for any
binarization scheme (LSH or anti-sparse coding) and any definition
of A (either random projections or a frame).

3.4. Explicit reconstruction

The anti-sparse binarization scheme explicitly minimizes the recon-
struction error, which is traded in (1) with the �∞ regularization
term. Eq. (11) gives an explicit approximation of the database vec-

tor y up to a scaling factor: ŷ ∝ Ae(y)
||Ae(y)||2 . The approximate near-

est neighbors NNe are obtained by computing the exact Euclidean
distances ||q − ŷi||2. This is slow compared to the Hamming dis-
tance computation. That is why, it is used to operate, like in [6], a
re-ranking of the first hypotheses returned based on the Hamming
distance (on the asymmetric scheme described in Sect. 3.3). The
main difference with [6] is that no extra-code has to be retrieved: the
reconstruction ŷ solely relies on e(y).

4. SIMULATIONS AND EXPERIMENTS

This section evaluates the search quality on synthetic and real data.
In particular, we measure the impact of:

• The Hamming embedding technique: LSH and binarization
based on anti-sparse coding. We also compare to the spectral
hashing method of [5], using the code available online.

• The choice of matrix A: random projections or frame for
LSH. For the anti-sparse coding, we always assume a frame.

• The search method: 1) NNb of (13) 2) NNa of (14) and 3)
NNe as described in Sect. 3.4.

Our comparison focuses on the case m ≥ d. In the anti-sparse
coding method, the regularization term h controls the trade-off be-
tween the robustness of the Hamming embedding and the quality of
the reconstruction. Small values of h favors the quality of the re-
construction (without any binarization). Bigger values of h gives
more components stuck to ‖x‖∞, which improves the approxima-
tion search with binary embedding. Optimally, this parameter should
be adjusted to give a reasonable trade-off between the efficiency
of the first stage (methods NNb or NNa) and the re-ranking stage
(NNe). Note however that, thanks to the algorithm described in Sec-
tion 2, the parameter is stable, i.e., a slight modification of this pa-
rameter only affects a few components. We set h = 1 in all our
experiments. Two datasets are considered for the evaluation:

• A database of 10,000 16-dimensional vectors uniformly
drawn on the Euclidean unit sphere (normalized Gaussian
vectors) and a set of 1,000 query vectors.

• A database of SIFT [12] descriptors available online2, com-
prising 1 million database and 10,000 query vectors of di-
mensionality 128. Similar to [5], we first reduce the vector
dimensionality to 48 components using principal component
analysis (PCA). The vectors are not normalized after PCA.

The comparison of LSH and anti-sparse. Figures 1 and 2 show
the performance of Hamming embeddings for synthetic data. On
Fig. 1, the quality measure is the recall@10 (proportion of true NN
ranked in first 10 positions) plotted as a function of the number of
bits m. For LSH, observe the much better performance obtained by
the proposed frame construction compared with random projections.
The same conclusion holds for anti-sparse binarization.

2http://corpus-texmex.irisa.fr
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Fig. 1. Anti-sparse coding vs LSH on synthetic data. Search quality
(recall@10) as a function of the number of bits of the representation.
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Fig. 2. Anti-sparse coding vs LSH on synthetic data (m = 48).

The anti-sparse coding offers similar search quality as LSH for
m = d when the comparison is performed using NNb of (13). The
improvement gets significant as m increases. The spectral hashing
technique [5] exhibits poor performance on this synthetic dataset.

The asymmetric comparison NNa leads a significant improvement,
as already observed in [7, 8]. The interest of anti-sparse coding
becomes obvious by considering the performance of the compari-
son NNe based on the explicit reconstruction of the database vectors
from their binary-coded representations. For a fixed number of bits,
the improvement is huge compared to LSH. It is worth using this
technique to re-rank the first hypotheses obtained by NNb or NNa.

Experiments on SIFT descriptors. As shown by Figure 3, LSH
is slightly better than anti-sparse on real data when using the binary
representation only (here m = 128), which might solved by tuning
h, since the first iteration of antisparse leads the binarization as LSH.
However, the interest of the explicit reconstruction offered by NNe

is again obvious. The final search quality is significantly better than
that obtained by spectral hashing [5]. Since we do not specifically
handle the fact that our descriptor are not normalized after PCA, our
results could probably be improved by taking care of the �2 norm.
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Fig. 3. Approximate search in a SIFT vector set of 1 million vectors.

5. CONCLUSION AND OPEN ISSUES

In this paper, we have proposed anti-sparse coding as an effective
Hamming embedding, which, unlike concurrent techniques, offers
an explicit reconstruction of the database vectors. To our knowl-
edge, it outperforms all other search techniques based on binariza-
tion. There are still two open issues to take the best of the method.
First, the computational cost is still a bit high for high dimensional
vectors. Second, if the proposed codebook construction is better than
random projections, it is not yet specifically adapted to real data.
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