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ABSTRACT
We study the problem of learning ridge functions of the form f(x) =
g(aTx), x ∈ R

d, from random samples. Assuming g to be a twice
continuously differentiable function, we leverage techniques from
low rank matrix recovery literature to derive a uniform approxima-
tion guarantee for estimation of the ridge function f . Our new anal-
ysis removes the de facto compressibility assumption on the param-
eter a for learning in the existing literature. Interestingly the price
to pay in high dimensional settings is not major. For example, when
g is thrice continuously differentiable in an open neighbourhood of
the origin, the sampling complexity changes from O(log d) to O(d)

or from O(d
2+ q

2−q ) to O(d4), depending on the behaviour of g′ and
g′′ at the origin, with 0 < q < 1 characterizing the sparsity of a.

Index Terms— Ridge functions, high dimensional function ap-
proximation, low rank recovery

1. INTRODUCTION

Several important problems in learning theory, statistics, modeling
physical systems, neural networks, and stochastic PDE’s involve ap-
proximating a function f , defined on a compact domain Ω ⊂ R

d,
from its point values (cf., [1] and the references therein).

In general, if the only assumption we make on the function f is
its smoothness with an order s > 0 (i.e., loosely speaking, it has s
continuous derivatives), then the best approximation one can achieve
is O(n−s/d), where n is the number of points at which the function
is queried. In other words, the problem has exponential complexity.
Therefore, in order to even attempt learning, we need to consider
other restrictions on the functions, especially in high dimensions,
that hold in real world settings.

In this paper, we are interested in approximating a particular
class of functions known as ridge functions. A ridge function is a
multivariate function f : R

d → R of the following form

f(x1, . . . , xd) =
m∑
i=1

gi(a
T
i x). (1)

The name “ridge function” was first introduced by Logan and Shepp
in 1975 [2]. Ridge function approximations are studied in Statistics
under the name of “Projection Pursuit” [3, 4, 5]. In short, projection
pursuit algorithms approximate a function of d variables by func-
tions of the form (1). The idea here is to reduce dimension by pro-
jecting x along ai’s to pick out the salient features. Ridge functions
also appear in neural networks [6, 7, 8, 9].
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Previous work: Recently, Cohen et al. [1] proposed a recovery
method for estimating functions of the form f(x) = g(aTx) from
point queries, where g : [0, 1] → R is a Cs function for s > 1. How-
ever they made a rather restrictive assumption that a � 0,1Ta = 1.
In order to establish estimation guarantees on f , the authors leverage
a compressive sensing twist: the parameter a must be compressible.
That is, a can be well-approximated by a sparse set of its coefficients.

In [10], the authors extend this work of Cohen et al. to also cap-
ture functions of the form f(x) = g(Ax) with A being an arbitrary
k × d matrix of rank k, with each row of A being compressible and
g being a C2 function. They exploit the second tenet of compres-
sive sensing: randomized sampling. As a result, for the class of C2

smooth ridge functions which are C3 differentiable in an open neigh-
bourhood of the origin, their sampling complexity comes out to be

O(log d) or O(d
2+ q

2−q ) (depending on the behaviour of g′ and g′′

at the origin) with 0 < q < 1 characterizing the sparsity of the linear
parameter a.

Our contribution: In this paper, we also consider learning func-
tions of the form f(x) = g(aTx) with randomized sampling with g
being a C2 function and ‖a‖ld2 = 1, similar to Fornasier et al. [10].

However, compared to [10], we remove the assumption that a is
compressible, in order to generalize the results to arbitrary a. Al-
though we only consider the simplest form of a ridge function with a
single parameter a, our setting can be extended in a straightforward
manner to functions of the form (1) with m > 1. Our main result is
a concatenation of a few existing ideas: we first leverage the matrix
Dantzig selector from [11] to recover an approximation â to a. We
then use â to obtain a uniform approximation to f .

Organization: Section 2 delineates the mathematical set up
along with the notations and assumptions used throughout in the pa-
per. Section 3 describes our analysis, which explains our ridge func-
tion estimation ideas in three steps. Section 4 provides a concluding
discussion along with comparisons of the sampling complexities.

2. PROBLEM SETUP AND ASSUMPTIONS

We borrow our notation from [10]. We consider estimating functions
f : BRd(1 + ε̄) → R of the form

f(x) = g(aTx); ‖a‖2 = 1,

where BRd denotes the unit ball and BRd(r) the ball of radius r > 0
in R

d. We assume g is a C2 function so that for some C2 > 0, we
have

sup|β|≤2

∥∥∥Dβg
∥∥∥
∞

≤ C2,

where D is the derivative operator. Denoting μSd−1 to be the uni-
form measure on the d-dimensional unit sphere S

d−1, we assume
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that the matrix

Hf :=

∫
Sd−1

∇f(x)∇f(x)T dμSd−1(x)

is well conditioned. That is,∫
Sd−1

∣∣∣g′(aTx)
∣∣∣2 dμSd−1(x) = α > 0.

Note, however, that we depart from [10] by making no com-
pressibility assumption on a. Therefore, the parameters in the model
can be summarized as follows: the dimension d of x, the smoothness
constant C2, and the matrix conditioning parameter 0 < α < C2

2 .
Since g is a C2 function, we have the following identity by Tay-

lors expansion of g at ξ:

[g′(aT ξ)a] · φ =
f(ξ + εφ)− f(ξ)

ε
− ε

2
[φT∇2f(ζ)φ], (2)

for ξ ∈ BRd , φ ∈ BRd(r), ε, r ∈ R+ with rε ≤ ε̄, and for a suitable
ζ(ξ, φ) ∈ BRd(1 + ε̄). We consider two sets of points X and Φ
defined as follows.

X =
{
ξj ∈ S

d−1 : j = 1, . . . ,mX
}
,

Φ = {φi,j ∈ BRd

(√
d/mΦ

)
: [φi,j ]k = ± 1√

mΦ
w.p. 1/2,

i = 1, . . . ,mΦ, j = 1, . . . ,mX and k = 1, . . . , d}.
Hence by using (2), we can obtain the following factorization:

Φ(X) = y + ε, (3)

where X = aGT = [g′(aT ξ1)a . . . g
′(aT ξmX )a] is a d × mX

matrix of rank 1, and y, ε ∈ R
mΦ are defined as follows (i =

1, . . . ,mΦ):

yi =

mX∑
j=1

[
f(ξj + εφi,j)− f(ξj)

ε

]
,

εi =

mX∑
j=1

[−ε

2
φT
i,j∇2f(ζ(ξj , φi,j))φi,j

]
.

Similar to [10], we choose Φ : Rd×mX → R
mΦ to be a random

linear measurement operator. The i-th entry of Φ(X) is denoted as
[Φ(X)]i = 〈Φi, X〉 where Φi = [φi,1 . . . φi,mX ] is of dimensions
d×mX and 〈Φi, X〉 = trace(ΦT

i X) is the standard inner product.
We present Proposition 1 below, which upperbounds the lmΦ

2 -
norm of the noise ε:

Proposition 1. Using the factorization equality (3) we obtain
‖ε‖lmΦ

2
≤ C2KmX

2
√
mΦ

where K = εd.

Proof. We can express the noise norm as follows:

‖ε‖lmΦ
2

=
ε

2

(
mΦ∑
i=1

∣∣∣∣∣
mX∑
j=1

[
φT
i,j∇2f(ζij)φi,j

]∣∣∣∣∣
2) 1

2

.

Now, φT
i,j∇2f(ζij)φi,j ≤ |g′′(a · ζij)|

mΦ

(
d∑

l=1

|al|
)2

≤ C2d

mΦ

⇒ ‖ε‖lmΦ
2

≤ C2KmX
2
√
mΦ

. (4)

Remark 1. Note that the dimension d appears in the bound (within
K) as we do not make any compressibility assumption on a. If a is
compressible, that is (

∑d
i=1 |ai|q)1/q ≤ D1 for some 0 < q < 1

and some non-negative constant D1, the bound becomes indepen-
dent of d, which would be replaced by D1.

3. THE ANALYSIS

Our goal now is to recover the rank 1 matrix X from a few random
linear measurements mΦ. We proceed in Section 3.1 by first solv-
ing a nuclear norm minimization based convex program, namely the

matrix Dantzig selector to obtain an approximation X̂DS to X with
a guaranteed upper bound on approximation error. We then take the

best rank 1 approximation X̂
(1)
DS to X̂DS , which doubles the constant

in the previous error bound. In Section 3.2 we use X̂
(1)
DS to recover

an approximation â to a with a guaranteed lower bound on |〈a, â〉|.
Finally, in Section 3.3 we use this lower bound to derive a uniform

approximation f̂ to f .

3.1. Low-rank matrix recovery with Dantzig Selector

To recover X , we solve the nuclear norm minimization problem
based on the following convex formulation [11]:

X̂DS = argmin ‖M‖∗ s.t. ‖Φ∗ (y − Φ(M))‖ ≤ λ, (5)

where the optimal solution is the estimate X̂DS , ‖·‖ is the operator
norm and ‖·‖∗ is its dual, i.e. the nuclear norm and Φ∗ is the ad-
joint of Φ. This convex program is referred to as the matrix Dantzig
selector [11]. As in [11], we require the ‘true’ matrix X to be fea-
sible, i.e. one should have ‖Φ∗(ε)‖ ≤ λ. In the case of bounded
noise, this corresponds to λ = C mX√

mΦ
for some constant C as is

mentioned in Lemma 1. Before proving this we first introduce the
matrix version of the restricted isometry property (RIP), for linear
mappings as defined in [11].

Definition 1. For matrices of dimensions n1×n2, n = min(n1, n2),
for each integer r = 1, 2, . . . , n, the isometry constant δr of Φ is
the smallest quantity such that

(1− δr) ‖X‖2F ≤ ‖Φ(X)‖2l2 ≤ (1 + δr) ‖X‖2F
holds for all matrices of rank at most r.

As Φ is a Bernoulli random measurement ensemble it follows
from standard concentration inequalities [12, 13] that for any given
X ∈ R

d×mX and any fixed 0 < t < 1,

P(| ‖Φ(X)‖2l2−‖X‖2F | < t ‖X‖2F ) ≤ 2 exp
(
−mΦ

2
(t2/2− t3/3)

)
.

By using a standard covering argument as shown in Theorem 2.3 of
[11] it is easily verifiable that Φ satisfies RIP with isometry constant
0 < δr < δ < 1 with probability at least

1− 2 exp (− (mΦq(δ)− r(d+mX + 1)u(δ))) ,

where q(δ) and u(δ) are constants depending only on δ.

Lemma 1. Given ε with a bounded norm, we have with probability
at least 1− 2 exp (− (mΦq(δ1)− (d+mX + 1)u(δ1))) that

‖Φ∗(ε)‖ ≤ C2KmX
2
√
mΦ

(1 + δ1)
1/2.
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Proof. Let E = Φ∗(ε). So, ‖Φ∗(ε)‖ = supv,w∈S
mX−1 |〈v,Ew〉| .

〈v,Ew〉 = trace(vTEw) = trace(EwvT )

= trace(Φ∗(ε)wvT ) =
〈
vwT ,Φ∗(ε)

〉
=

〈
Φ(vwT ), ε

〉
≤ ‖ε‖lmΦ

2

∥∥∥Φ(vwT )
∥∥∥
l
mΦ
2

.

Using (4) and since
∥∥Φ(vwT )

∥∥2
l
mΦ
2

≤ (1 + δ1) we arrive at the

bound on ‖Φ∗(ε)‖.

We now present the error bound for the matrix Dantzig selector
as was obtained in [11] in Theorem 1. In Corollary 1, we exploit
this result in our setting for r = 1 in order to obtain the error bound

for recovering the rank 1 approximation X̂
(1)
DS to X .

Theorem 1. Let rank(X) ≤ r and let X̂DS be the solution to (5). If
δ4r < δ <

√
2− 1 and ‖Φ∗(ε)‖ ≤ λ, then with probability at least

1− 2 exp (− (mΦq(δ)− 4r(d+mX + 1)u(δ))) we have∥∥∥X̂DS −X
∥∥∥2
F
≤ C0rλ

2,

where C0 depends only on the isometry constant δ4r .

Corollary 1. Let X̂(1)
DS be the best rank 1 approximation (in the

sense of ‖·‖F ) to X̂DS . If δ4 < δ <
√
2−1 we have with probability

at least 1− 2 exp (− (mΦq(δ)− 4(d+mX + 1)u(δ))) that∥∥∥X − X̂
(1)
DS

∥∥∥2
F
≤ C0C

2
2K

2m2
X

mΦ
(1 + δ),

where C0 is a constant depending only on δ.

Proof. Lemma 1 in conjunction with Theorem 1 gives us the fol-

lowing bound on
∥∥∥X − X̂DS

∥∥∥2
F

:

∥∥∥X − X̂DS

∥∥∥2
F
≤ C0C

2
2K

2m2
X

4mΦ
(1 + δ).

In general rank(X̂DS) > 1, thus we consider the best rank 1 approx-

imation to X̂DS , in the sense of ‖·‖F . We then obtain the following
error bound:∥∥∥X − X̂

(1)
DS

∥∥∥
F

≤
∥∥∥X − X̂DS

∥∥∥
F
+
∥∥∥X̂DS − X̂

(1)
DS

∥∥∥
F
,

≤ 2
∥∥∥X − X̂DS

∥∥∥
F
.

Here
∥∥∥X̂DS − X̂

(1)
DS

∥∥∥
F

≤
∥∥∥X − X̂DS

∥∥∥
F

as X̂
(1)
DS is the best rank

1 approximation to X̂DS in the sense of ‖·‖F .

3.2. Approximation of a

In the previous section, we have found a rank 1 approximation X̂
(1)
DS

to the original rank 1 matrix, X . Now, we let

X = σagT ,

X̂
(1)
DS = σ̂âĝT ,

where σ = (
∑mX

j=1

∣∣g′(aT ξj)
∣∣2)1/2, σ̂ > 0 and ‖a‖ = ‖g‖ =

‖â‖ = ‖ĝ‖ = 1. We now show that if the bound on
∥∥∥X − X̂

(1)
DS

∥∥∥
F

is driven to be lower than a certain value then it guarantees prob-
abilistically a lower bound on |〈a, â〉|. This is stated precisely in
Lemma 2

Lemma 2. For a fixed 0 < ρ < 1, mX ≥ 1, mΦ < mXd, if

ε < 1
d

(
mΦα(1− ρ)

C0C
2
2mX (1 + δ)

)1/2

, then we have with probability at

least

1− 2 exp

(−2mXα2ρ2

C4
2

)
−2 exp (− (mΦq(δ)− 4(d+mX + 1)u(δ))) ,

that |〈a, â〉| ≥
(√

mXα(1− ρ)− τ√
mXα(1 + ρ) + τ

)
,

where τ2 = C0C
2
2K

2m2
X

mΦ
(1 + δ) is the error bound derived in

Corollary 1.

Proof.
∥∥∥X − X̂

(1)
DS

∥∥∥2
F
= σ2+ σ̂2−2σσ̂ 〈a, â〉 〈g, ĝ〉. From Weyls

inequality [14] we have
∥∥∥X − X̂

(1)
DS

∥∥∥
F

≤ τ ⇒ |σ − σ̂| ≤ τ .

Hence we have

〈a, â〉 〈g, ĝ〉 ≥ σ2 + σ̂2 − τ2

2σσ̂

≥ σ2 + (σ − τ)2 − τ2

2σ(σ + τ)
=

σ − τ

σ + τ

From Hoeffdings inequality we have for any fixed 0 < ρ < 1,

P

(∣∣∣∣∣ 1

mX

mX∑
j=1

∣∣∣g′(aT ξj)
∣∣∣2 − α

∣∣∣∣∣ > ρα

)

≤ 2 exp

(−2mXα2ρ2

C4
2

)

So σ ∈ [
√

mXα(1− ρ),
√

mXα(1 + ρ)] with probability at least

1− 2 exp

(
−2mXα2ρ2

C4
2

)
. Conditioning on this event, we see that

τ < σ is ensured if ε < 1
d

(
mΦα(1− ρ)

C0C
2
2mX (1 + δ)

)1/2

. This com-

pletes the proof.

3.3. Approximation of f

We now have the results necessary to state our main approximation

result for the function f . Note that our estimation f̂ is constructed
in a manner similar to [10].

Theorem 2. (Main approximation theorem) Let us fix 0 < ρ <
1, 0 < δ <

√
2 − 1. Under the assumptions and notations

mentioned earlier, for a fixed mX ≥ 1, mΦ < mXd and ε <

1
d

(
mΦα(1− ρ)

C0C
2
2mX (1 + δ)

)1/2

we have with probability at least

1− 2 exp

(−2mXα2ρ2

C4
2

)
−2 exp (− (mΦq(δ)− 4(d+mX + 1)u(δ)))

that the function f̂(x) = ĝ(âTx) defined by means of

ĝ(y) := f(ây), y ∈ (−(1 + ε̄), (1 + ε̄)),

has the uniform approximation bound

∥∥∥f − f̂
∥∥∥
∞

≤ C2(1 + ε̄)

√√√√1−
(√

mXα(1− ρ)− τ√
mXα(1 + ρ) + τ

)2

.
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Proof. For x ∈ BRd(1 + ε̄) we have∣∣∣g(aTx)− ĝ(âTx)
∣∣∣ = ∣∣∣g(aTx)− g((aT â)(âTx))

∣∣∣
≤ C2

∣∣∣aTx− (aT â)(âTx)
∣∣∣ = C2

∣∣∣(a− 〈a, â〉 â)Tx
∣∣∣

≤ C2(1 + ε̄) ‖a− 〈a, â〉 â‖ld2 ≤ C2(1 + ε̄)

√
1− 〈a, â〉2.

The bound follows from the approximation result of Lemma 2.

Remark 2. Note that once â has been obtained, one would uni-
formly sample the estimated function ĝ on a grid hZ

⋂
(−(1 +

ε̄), (1 + ε̄)), with h > 0 being the step size, and compute a suitable
interpolation ĝh (by using quasi interpolants, for example) with the
following uniform approximation error bound:

‖ĝh − ĝ‖∞ ≤ C2h
2.

Thus we would have the following:

‖g − ĝh‖∞ ≤ ‖g − ĝ‖∞ + ‖ĝ − ĝh‖∞

≤ C2(1 + ε̄)

√√√√1−
(√

mXα(1− ρ)− τ√
mXα(1 + ρ) + τ

)2

+ C2h
2.

Remark 3. Similar to [10], the approximation perfomance of our
learning scheme is determined by α. It was shown in [10] that
the measure μSd−1 determines a push-forward measure μ1 on the
unit interval BR which concentrates around 0, exponentially fast as
d → ∞. In other words the asymptotic behaviour of α is determined
completely by the function g′ in a neighbourhood of 0. In particular,
when g is C3 differentiable in an open neighbourhood of the origin
we can show that [10]:

1. If g′(0) �= 0, then α(d) = O(1), ε = O(1/
√
d) as d → ∞

2. If g′(0) = 0 and g′′(0) �= 0 then α(d) = O(1/d), ε =

O(1/(d
√
d)) as d → ∞

Remark 4. Finally we see that for a given fixed ε, the sampling
complexity of our learning scheme is mX (mΦ + 1), which is delin-
eated in Table 1. Observe that the smoothness properties of g at the
origin significantly impacts the sampling complexity of our learning
scheme, by a factor of 3. Furthermore the difference in sampling
complexities with the case when a is sparse (Fornasier et al. [10]),
which has the same sampling scheme, can be observed clearly. This
difference arises on account of the compressive sensing tools used
due to the sparsity assumption made on a.

Fornasier et al. mX mΦ mX ×mΦ

g′(0) = 0, g′′(0) �= 0 O(d2) O(d
q

2−q ) O(d
2+ q

2−q )
g′(0) �= 0 O(1) O(log d) O(log d)

Our work mX mΦ mX ×mΦ

g′(0) = 0, g′′(0) �= 0 O(d2) O(d2) O(d4)
g′(0) �= 0 O(1) O(d) O(d)

Table 1. Comparison of sampling complexities when a is sparse
(Fornasier et al [10]) with no sparsity assumption based recovery
scheme (our work) for the cases when: (i) g′(0) = 0, g′′(0) �= 0
and (ii) g′(0) �= 0. Here g is assumed to be C3 differentiable in an
open neighborhood of the origin.

4. CONCLUSIONS

In this paper, we consider the problem of learning ridge functions of
the form f(x) = g(aTx), for arbitrary a ∈ R

d with ‖a‖ld2 = 1.

By removing the sparsity assumption on a, we generalize the work
done in [10]. Assuming g to be a C2 function, our learning strategy
leverages a low rank matrix recovery program [11] to first recover
an approximation â to a, and then uses â to form an approximation
to f . We establish the sampling complexity of our approach to be
polynomial in the dimension d. Without loss of generality, we treat
the case with only a single parameter a as the results are easier to
interpret, however the case when m > 1 in (1) can also be treated in
our setting, which is left for future work.
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