
KERNEL DICTIONARY LEARNING

Hien Van Nguyen1, Vishal M. Patel1, Nasser M. Nasrabadi2, and Rama Chellappa1

1UMIACS, University of Maryland, College Park, MD
2U.S. Army Research Laboratory, Adelphi, MD

{hien,pvishalm,rama}@umiacs.umd.edu nasser.m.nasrabadi.civ@mail.mil

ABSTRACT

In this paper, we present dictionary learning methods for sparse and
redundant signal representations in high dimensional feature space.
Using the kernel method, we describe how the well-known dictio-
nary learning approaches such as the method of optimal directions
and K-SVD can be made nonlinear. We analyze these constructions
and demonstrate their improved performance through several exper-
iments on classification problems. It is shown that nonlinear dic-
tionary learning approaches can provide better discrimination com-
pared to their linear counterparts and kernel PCA, especially when
the data is corrupted by noise.

Index Terms— Kernel methods, dictionary learning, method of
optimal directions, K-SVD.

1. INTRODUCTION

Sparse and redundant signal representations have recently drawn
much interest in vision, signal and image processing [1]. This is due
in part to the fact that signals and images of interest can be sparse
or compressible in some dictionary. The dictionary can be either
based on a mathematical model of the data or it can be learned di-
rectly from the data. It has been observed that learning a dictionary
directly from the training data rather than using a predetermined dic-
tionary (i.e. wavelet) usually leads to a more compact representation
and hence can provide improved results in many practical image
processing applications such as restoration and classification [1].

Several algorithms have been developed for the task of learn-
ing dictionaries. Two of the most well-known algorithms are the
method of optimal directions (MOD) [2] and the K-SVD algorithm
[3]. Given a set of examples Y = [y1, · · · ,yn], the goal of the
K-SVD and MOD algorithms is to find a dictionary D and a sparse
matrix X that minimize the following representation error

(D̂, X̂) = arg min
D,X

‖Y − DX‖2
F subject to ‖xi‖0 ≤ T0 ∀i,

where xi represent the columns of X and the �0 sparsity measure
‖.‖0 counts the number of nonzero elements in the representation.
Here, ‖A‖F denotes the Frobenius norm. Both MOD and K-SVD
are iterative methods and they alternate between sparse-coding and
dictionary update steps.

The representation obtained by learning a dictionary can be fur-
ther enhanced by exploiting the nonlinearities present in the data [4],
[5]. For instance, in [6] it is shown that if the nonlinear sparsity is
properly exploited then one can accurately recover nonlinearly K-
sparse signals from approximately 2K measurements, which is far

This work was partially supported by a MURI from the Army Research
Office under the Grant W911NF-09-1-0383.

fewer than the number of measurements usually required for sig-
nals that are sparse in an orthonormal basis. In this paper, using
kernel methods, we develop dictionary learning algorithms that take
into account the nonlinear structure of data. Our dictionary learn-
ing methods yield representations that are more compact than kernel
PCA and able to handle non-linearity better than its linear counter-
parts. Fig. 1, presents an important comparison in the representation
power of kernel PCA and a learned kernel dictionary. A comparison
of the mean-squared-error (MSE) of an image from the USPS dataset
when approximated from m kernel PCA components and m kernel
dictionary atoms (denoted by kernel KSVD) shows that the MSE de-
cays much faster when a learned non-linear dictionary is used. This
example shows that the image is nonlinearly sparse and learning a
dictionary in the high dimensional feature space can provide better
representation of data.

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number Of Dictionary Atoms

E
rr

or
 P

er
ce

nt
ag

e

Kernel PCA
Kernel KSVD

Fig. 1. Comparison of error percentage using kernel K-SVD and
kernel PCA.

Background and problem formulation: Let Φ : R
N → F be

a non-linear mapping from R
N into a higher dimensional feature

space F . Since the feature space F can be very high dimensional,
in the kernel methods, Mercer kernels are usually employed to carry
out the mapping implicitly. A Mercer kernel is a function κ(x,y)
that for all data {yi} gives rise to a positive semidefinite matrix
Kij = κ(yi,yj). It can be shown that using κ instead of dot prod-
uct in input space corresponds to mapping the data with some map-
ping Φ into a feature space F . That is, κ(x,y) = 〈Φ(x), Φ(y)〉.
Some commonly used kernels include polynomial kernels κ(x,y) =

〈(x,y〉 + c)d and Gaussian kernels κ(x,y) = exp(− ‖x−y‖2

c
),

where c and d are the parameters. Thus, any algorithm that can
be formulated in terms of dot products can be carried out in some
feature space F without mapping the data explicitly by substituting
a chosen kernel.

In this paper, we will use the following model for the dictionary
D: D = BA, where B is some predefined base dictionary and A

is the atom representation dictionary [7]. The base dictionary B can
be chosen such that it incorporates some prior knowledge about the
data. This model provides adaptivity via modification of the matrix
A. Let Φ(Y) denote the matrix whose columns are obtained by
embedding the input signals Y = [y1, · · · ,yn] into some feature

2021978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

space using the mapping Φ. That is, Φ(Y) = [Φ(y1), · · · , Φ(yn)].
Furthermore, we denote the learned dictionary in the feature space
as Φ(D). Since dictionary atoms lie within the subspace spanned by
the input data, we can write Φ(D) = Φ(Y)A, where A is the atom
representation dictionary and Φ(Y) is the base dictionary.

Our goal is to find the best dictionary Φ(D) via A to represent
the data in the feature space {Φ(yi)}

n
i=1 as sparse compositions by

solving the following optimization problem

arg min
A,X

‖Φ(Y) − Φ(Y)AX‖2
F s.t ‖xi‖0 ≤ T0,∀i. (1)

The objective function in (1) can be rewritten as in Eq. (2), which
explicitly depends on the kernel matrix K, but not the mapping Φ

‖Φ(Y)−Φ(Y)AX‖2
F = tr((I−AX)T

K(Y,Y)(I−AX)), (2)

where K(Y,Y) ∈ R
n×n is a positive semidefinite matrix whose

elements are computed from the Mercer kernel

[K(Y,Y)]ij = [〈Φ(Y), Φ(Y)〉]ij = κ(yi, yj).

Equipped with the above notation, in the following section, we
present two algorithms for learning a dictionary in the feature space.

2. KERNEL DICTIONARY LEARNING

Just as in the case of K-SVD and MOD, our method of learning dic-
tionaries involve two stages: sparse coding and dictionary update.
In what follows, we describe them in detail.

Sparse coding: In this stage, the matrix A is assumed to be fixed.
With this, we seek for the sparse codes contained in the matrix X.
Note that, the penalty term in (1) can be re-written as

‖Φ(Y) − Φ(Y)AX‖2
F =

n∑
j=1

‖Φ(yi) − Φ(Y)Axi‖
2
2.

Hence, the problem in (1) can be reformulated as solving n different
problems of the following form

min
xi

‖Φ(yi) − Φ(Y)Axi‖
2
2 s.t ‖xi‖0 ≤ T0, (3)

for i = 1, · · · , n. The above problem can be solved by any pursuit
algorithms [8, 9], with the modification that signals are now in the
feature space with a very high dimension. In the following section,
we show how the well-known orthogonal matching pursuit algo-
rithm (OMP) [9, 10] can be generalized using kernels to solve (3).

Kernel Orthogonal Matching Pursuit (KOMP): Given a signal
z ∈ R

N and the kernel dictionary represented via A, we seek a
sparse combinations of dictionary atoms that approximate the signal
in the feature space: Φ(z) = Φ(Y)ẑs +rs. Here, ẑs ∈ R

n indicates
the current estimate of the signal z, and rs is the current residual.

The pseudo-code for KOMP is given in the Fig. 2. Let Is denote
the set of indices of selected atoms. In the first step, the residual is
projected onto the remaining dictionary atoms:

r
T
s (Φ(Y)ai) =

(
Φ(z) − Φ(Y)ẑs

)T (
Φ(Y)ai

)

=
(
K(z, Y) − K(Y,Y)ẑT

s

)
ai, i /∈ Is (4)

where, with a slight abuse of notation, we denote

K(z,Y) = [κ(z, y1), κ(z, y2), . . . , κ(z,yn)].

Input: A signal z, a kernel function κ, A, and a sparsity level T0 .
Task: Find a coefficient vector x ∈ R

K with at most T0 non-zero coefficients such
that Φ(Y)Ax approximates Φ(z).
Initialize: s = 0, I0 = ∅, x0 = 0, ẑ0 = 0

Procedure:

1. τi =
(

K(z, Y) − ẑ
T

s
K(Y, Y)

)
ai, ∀i /∈ Is−1

2. imax = arg max
i
|τi|, ∀i /∈ Is−1

3. Update the index set Is = Is−1

⋃
imax

4. xs =
(
A

T

Is
K(Y, Y)AIs

)
−1

(K(z, Y)AIs
)T

5. ẑs = AIs
xs

6. s← s + 1; Repeat steps 1–6 T0 times

Output: Sparse vector x ∈ R
K satisfying x(Is(j)) = xs(j), ∀j ∈ Is and zero

elsewhere.

Fig. 2. The KOMP algorithm.

The algorithm then selects a new dictionary atom in the remaining
set that gives largest projection coefficient in Eq. (4). This selection
guarantees the biggest reduction of approximation error.

Let AIs
indicates the set of dictionary atoms whose indices are

from the set Is. We want to project the signal Φ(z) onto the subspace
spanned by the selected dictionary atoms Φ(Y)AIs

. The projection
coefficients are simply obtained as follows:

xs =
(
(Φ(Y)AIs

)T (Φ(Y)AIs
)
)−1(

Φ(Y)AIs

)T
Φ(z)

=
(
A

T
Is

K(Y,Y)AIs

)−1(
K(z, Y)AIs

)T
(5)

Note that the computation in Eq. (5) can be efficiently implemented
in a recursive manner as in [9]. Once the coefficients xs are found,
the approximating signals ẑs are updated as in the step 5 of Fig. 2.
The procedure is repeated until T0 atoms are selected.

Dictionary Update: Once the sparse codes for each training data
are calculated, the dictionary can be updated such that the error,
‖Φ(Y) − Φ(Y)AX‖2

F is minimized. Taking the derivative of this
error with respect to A and after some manipulations, we obtain the
relation A = XT (XXT)−1 which leads to the following update:
Ak+1 = XT

k (XkX
T
k)−1 = X

†
k.

This way of updating the dictionary is essentially the idea behind
the MOD method [2]. As discussed in [3], one of the major draw-
backs of the MOD method is that it suffers from the high complexity
of matrix inversion during the dictionary update stage. Several other
methods have also been proposed that focus on reducing this com-
plexity. One such algorithm is K-SVD [3]. Following the procedure
of K-SVD, in what follows, we describe a more sophisticated way
of updating the dictionary.

Kernel K-SVD: Let ak and x
j

T denote the k-th column of A and
the j-th row of X, respectively. The error ‖Φ(Y) − Φ(Y)AX‖2

F

can be re-written as:

∥∥∥∥∥Φ(Y) − Φ(Y)

K∑
j=1

ajx
j

T

∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
Φ(Y)

⎛
⎝I−

∑
j �=k

ajx
j

T

⎞
⎠ − Φ(Y)(akx

k
T)

∥∥∥∥∥∥

2

F

= ‖Φ(Y)Ek − Φ(Y)Mk‖
2

F
(6)

2022

where,

Ek =

⎛
⎝I−

∑
j �=k

ajx
j

T

⎞
⎠ ; Mk = (akx

k
T). (7)

Ek indicates the error between the approximated signals and the true
signals when removing the k-th dictionary atom. Mk indicates the
contribution of the k-th dictionary atom to the estimated signals.

In this stage, we assume that only (ak, xk
T) are variables and the

rest are fixed, hence Ek is also constant for each k. Minimization
of the above problem is equivalent to finding (ak,xk

T) such that the
rank-1 matrix Φ(Y)Mk best approximates Φ(Y)Ek. The optimal
solution can be obtained via SVD. However, there are two reasons
that make direct SVD decomposition inappropriate. Firstly, it would
yield a dense vector xk

T , which increases the number of non-zeros
in the representation X. Secondly, the matrix might have infinitely
large row dimension, which is computationally prohibitive.

In order to minimize the objective function while keeping the
sparsities of all the representations fixed, we work only with a sub-
set of columns. Note that the columns of Mk associated with zero-
value elements of xk

T are all zero. These columns do not affect the
minimization of the objective function. Therefore, we can shrink
the matrices Ek and Mk by discarding these zero columns. An ad-
vantage of working with the reduced matrices is that only non-zero
coefficients in xk

T are allowed to vary and therefore the sparsities are
preserved [3].

Define ωk as the group of indices pointing to examples {Φ(yi)}
that use the atom (Φ(Y)A)k: ωk = {i|1 ≤ i ≤ K, xk

T (i) 	= 0}.
Let Ωk be a matrix of size n × |ωk|, with ones on the (ωk(i), i)-th
entries and zeros elsewhere. When multiplying with Ωk , all zeros
within the row vector xk

T will be discarded resulting in the row vec-
tor xk

R of the length |ωk|. The column-reduced matrices are obtained
as ER

k = EkΩk; MR
k = MkΩk.

We can now modify the cost function in (6) so that its solution
has the same support with the original xk

T :

∥∥∥Φ(Y)ER
k − Φ(Y)MR

k

∥∥∥
2

F
=

∥∥∥Φ(Y)ER
k − Φ(Y)akx

k
R

∥∥∥
2

F
. (8)

Recall the fact that Φ(Y)akx
k
R is a rank-1 matrix. Therefore,

the optimal solution of (8) can be obtained by first decompos-
ing Φ(Y)ER

k into rank-1 matrices using SVD, and then equating
Φ(Y)akx

k
R to the rank-1 matrix corresponding to the largest singu-

lar value. That is,

Φ(Y)ER
k = UΣV

T (9)

Φ(Y)akx
k
R = σ1u1v

T
1 , (10)

where u1 and v1 are the first columns of U and V corresponding to
the largest singular value σ1 = Σ(1, 1), respectively. A valid break-
down for the assignment (10) is given. The reason for putting the
multiplier σ1 in Eq. (11) instead of in Eq. (12) will become clearer
when solving for ak. Basically, such assignment guarantees that the
resulting dictionary atom on the feature space is normalized to unit-
norm

x
k
R = σ1v

T
1 (11)

Φ(Y)ak = u1. (12)

However, as mentioned before, we can not perform direct SVD
decomposition on Φ(Y)ER

k as in (9) since this matrix can have in-
finitely large row dimension. A remedy for this issue comes from the

fact that SVD decomposition is closely related to eigen decomposi-
tion of the Gram matrix, which is independent of the row dimension.
It is easily seen that

(
Φ(Y)ER

k

)T (
Φ(Y)ER

k

)
= (ER

k)
T

K(Y,Y)(ER
k) = V
 V

T ,

where
 = ΣT Σ ∈ R
n×n. This gives us v1 as the first column of

V, and σ1 =
√

(1, 1). Hence, xk
R can be found using the relation

in (11).
To solve for ak, we first observe that by right-multiplying both

sides of (9) by V and considering only the first column, we get

Φ(Y)ER
k v1 = σ1u1. (13)

The solution for ak is obtained by substituting Eq. (12) into Eq. (13)
Φ(Y)ER

k v1 = σ1Φ(Y)ak. Hence, ak = σ−1

1 ER
k v1. One can eas-

ily verify that this updating procedure of ak results in a dictionary
atom of unit-norm on the feature space. The pseudo-code for kernel
K-SVD algorithm is given in Fig. 3.

Input: A set of signals Y, a kernel function κ.
Task: Find a dictionary via A to represent these signals as sparse decompositions in
the feature space by solving Eq. (1).
Initialize: Set T0 random elements of each column in X to be 1. Set iteration
J = 1.
Stage 1: Sparse coding
Use the KOMP algorithm described in Fig. 2 to obtain sparse coefficient matrix X

given a fixed dictionary A.
Stage 2: Dictionary update
For each column k = 1, 2, . . . , K in A

(J−1) , update it by
- Define the group of examples that use this atom, ωk = {i|1 ≤ i ≤ N, xk

T
(i) �=

0}
- Define the representation error matrix, Ek , by (7).
- Restrict Ek by choosing only the columns corresponding to ωk , and obtain E

R

k
as

E
R

k
= EkΩk

- Apply SVD decomposition to get (ER

k
)T

K(Y, Y)(ER

k
) = V�V

T . Choose
updated ak = σ−1

1 E
R

k
v1, where v1 is the first vector of V corresponding to the

largest singular value σ2
1 =�(1, 1).

- Set J = J + 1
Output: A and X.

Fig. 3. The kernel K-SVD algorithm.

3. EXPERIMENTAL RESULTS

First we present two synthetic experiments to examine the effective-
ness of a learned dictionary in the feature space. The following pa-
rameters are used to learn dictionaries using both K-SVD and kernel
K-SVD: dictionaries are learned with 30 atoms, T0 = 3, polyno-
mial kernel of degree 2 is used, the maximum number of training
iterations is set to 80.

The first synthetic experiment is done with two classes of data.
In each class, 1500 data samples are randomly generated from a 2-
dimensional circle {y = [y1, y2] ∈ R

2 | y2
1 + y2

2 = r2}. The radius
r of the first circle (class 1) is half that of the second circle (class 2).
The first figure in the left column of Fig. 4 shows the color-coded
map of error ratio obtained by dividing the reconstruction errors of
the second class by those of the first class for all points on the R

2

plane. Since data samples from the two classes lie roughly on the
same linear subspace, which is the entire plane in R

2, dictionaries
learned using K-SVD are indistinguishable for the two classes. This
is clearly seen from this figure where error ratios are quite random
even for points lying on the circles.

On the contrary, as can be seen from the first figure in the second
row of Fig. 4, the error ratios corresponding to a dictionary learned in
the feature space exhibit strong differences between the two classes.
In particular, error ratios are very high for points lying close to the

2023

first class, and very small for points lying close to the second class.
Moreover, points on the same circle have similar error ratios. This
observation implies that kernel K-SVD correctly learns the nonlinear
structure of the data and embeds this information into kernel dictio-
nary atoms.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Fig. 4. Left: Comparison of error ratio for K-SVD and kernel K-
SVD (common logarithm scale). Right: Comparison between con-
tours of linear K-SVD and kernel K-SVD for three different dictio-
nary atoms. In both figures, the first row corresponds to K-SVD and
the second row corresponds to kernel K-SVD.

In the second synthetic experiment, we learn a dictionary from
1500 data samples generated from a 2-dimensional parabola {y =
[y1, y2] ∈ R

2 | y2 = y2
1}. Columns 2-4 in Fig. 4 show level curves

of the projection coefficients for three different dictionary atoms.
The level curves are obtained as follows. First, we project every
point y ∈ R

2 onto the selected dictionary atom to get the projection
coefficients. Then, points with the same projection coefficients are
grouped together and are shown with the same color map. Coeffi-
cients of the kernel K-SVD (Bottom row of columns 2-4 in Fig. 4)
change most dramatically along the main directions of data’s vari-
ation, while coefficients of the linear K-SVD do not. Again, this
observation implies that our dictionary learning method can provide
good representation for data with non-linear structures.
Digit Recognition: In recent years, there has been a great inter-
est in applying dictionary learning methods for classification. To
this end, we apply our approach on the real-world handwritten digits
classification problem. We use the USPS database which contains
ten classes of 256-dimensional handwritten digits. For each class,
we randomly select 300 samples for training and 200 samples for
testing. We use the following parameters for learning dictionaries:
dictionaries are learned with 500 atoms, T0 = 5, polynomial kernel
of degree 4 is used, maximum number of training iterations are set
to 80.

We use the generative approach to do classification. In partic-
ular, digits are classified to the classes that give the smallest recon-
struction error. Let {Ai}

c
i=1 denote the learned dictionaries for c

classes. Given a query image z, we first perform KOMP on each Ai

to get the sparse code xi. The reconstruction error is then computed
as:

ri = ||Φ(z) − Φ(Y)Aixi||
2

= K(z, z) − 2K(z, Y)Aixi + xi
T
A

T
i K(Y,Y)Aixi. (14)

For kernel PCA, we project the query image z onto the first 500
principal components and train a linear SVM classifier using these
coefficients for classification. Note that in the case of K-SVD, kernel
MOD and kernel K-SVD, dictionaries are trained separately for each
class while kernel PCA uses all training samples to obtain projection
coefficients. For fair comparisons, we have also obtained projection
coefficients by training separate dictionaries for each class using ker-
nel PCA.

0 0.5 1 1.5 2

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Standard Deviation σ

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
ie

s

KSVD
Kernel KSVD
Kernel PCA
Kernel MOD

(a) Gaussian noise

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of missing pixels

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
ie

s

Kernel KSVD

KSVD

KPCA−Separate

KPCA−Together

Kernel MOD

(b) Missing pixels

Fig. 5. Comparison of digit recognition accuracies for different
methods in the presence of Gaussian noise and missing-pixel effects.

The first experiment presents the results for the situation where
test samples are corrupted by random Gaussian noise with different
standard deviations as shown in Fig. 5(a). Fig. 5(b) shows the results
obtained when pixels are randomly removed from the test images.
In both experiments, Kernel K-SVD and kernel MOD consistently
outperform linear K-SVD and kernel PCA. As the distortion level in-
creases the performance difference between kernel dictionaries and
linear dictionaries become more dramatic.

4. DISCUSSION AND CONCLUSION

We have presented two non-linear dictionary learning algorithms
that exploit sparsity of data in high dimensional feature space
through an appropriate choice of kernel. It is shown that kernel
methods improve the separating margin between dictionaries and
allow better tolerance against different types of degradations. Ex-
perimental results indicate that exploiting nonlinear sparsity via
learning dictionaries in the feature domain can provide better dis-
crimination than the traditional linear approaches and kernel PCA.

5. REFERENCES

[1] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse
representation modeling,” Proceedings of the IEEE, submitted 2009.

[2] K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions
for frame design,” Proc. IEEE Int. Conf. Acoust., Speech, Signal Pro-
cess., vol. 5, pp. 2443–2446, 1999.

[3] M. Aharon, M. Elad, and A. M. Bruckstein, “The k-svd: an algorithm
for designing of overcomplete dictionaries for sparse representation,”
IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, 2006.

[4] S. Gao, I. W. Tsang, and L.-T. Chia, “Kernel sparse representation for
image classification and face recognition,” in European Conference on
Computer Vision, vol. 6314, 2010.

[5] X.-T. Yuan and S. Yan, “Visual classification with multi-task joint
sparse representation,” in Comp. Vision and Pattern Recognition, 2010.

[6] H. Qi and S. Hughes, “Using the kernel trick in compressive sensing:
Accurate signal recovery from fewer measurements,” in IEEE Int. Conf.
on Acoustics, Speech and Signal Proc., may 2011, pp. 3940 –3943.

[7] R. Rubinstein, M. Zibulevsky, and M. Elad, “Double sparsity: Learning
sparse dictionaries for sparse signal approximation,” Signal Processing,
IEEE Transactions on, vol. 58, no. 3, pp. 1553 –1564, march 2010.

[8] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by ba-
sis pursuit,” SIAM J. Sci. Comp., vol. 20, no. 1, pp. 33–61, 1998.

[9] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: recursive function approximation with applications to wavelet
decomposition,” 1993 Conference Record of the 27th Asilomar Confer-
ence on Signals, Systems and Computers, pp. 40–44, 1993.

[10] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxima-
tion,” IEEE Trans. Info. Theory, vol. 50, no. 10, pp. 2231–2242, Oct.
2004.

2024

