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ABSTRACT
In this paper, we propose a shrinkage-to-tapering oracle

(STO) estimator for estimation of large covariance matrix

when the number of samples is substantially fewer than the

number of variables, by combining the strength from both

Steinian-type shrinkage and tapering estimators. Our contri-

butions include: (i) Deriving the Frobenius risk and a lower

bound for the spectral risk of an MMSE shrinkage estima-

tor; (ii) Deriving a closed-form expression for the optimal

coefficient of the proposed STO estimator. Simulations on

auto-regression (e.g. a sparse case) and fraction Brownian

motion (e.g. a non-sparse case) covariance structures are

used to demonstrate the superiority of the proposed estimator.

Index Terms— Covariance matrix, high-dimensionality,

shrinkage estimator, tapering estimator.

1. INTRODUCTION

We consider the problem of estimating the covariance struc-

ture Σ of n i.i.d.observations {xi}n
i=1 that are realized from

a p-dimensional random vector. Covariance estimation prob-

lem is of great importance in array signal processing [1],

eigen-image analysis [2] and principle component analy-

sis [3]. A natural estimator of Σ is the unstructured sample

covariance matrix of {xi}:

Ŝ = n−1
n∑

i=1

xixT
i . (1)

It is well-known that Ŝ is a “good” estimator and converges

to Σ optimally under the spectral risk when n → ∞ and the

number of variables p is fixed. Unfortunately, when the model

size p grows as more and more data are collected, e.g. when

p is the number of basis functions of a finer expansion in a

wavelet domain, random matrix theory predicts that the spec-

trum of Ŝ is wider than the spectrum of Σ, even when p and

n grow at comparable rates [4].
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To tackle the issues of estimating large covariance ma-

trices, regularization is generally needed. The regularized

estimation approaches of large covariance matrices can be

broadly classified into two categories: one is based on the

shrinkage methods [5, 6] that shrink the covariance matrix

to some well-conditioned matrices, and the other is based on

operations directly applied to Ŝ such as banding [7], taper-

ing [8], and thresholding [9]. Both categories aim for a stabi-

lized estimation of eigenvalues as dimensionality grows.

Despite the recent progress on large covariance ma-

trix estimation, there has been relatively little fundamen-

tal theoretical study on comparing the shrinkage-type and

tapering-type estimators. To fill this gap, we propose in

this paper a shrinkage-to-tapering estimator for general and

high-dimensional covariance matrices, with the goal that it

improves upon both shrinkage and tapering estimators.

The rest of paper is organized as follows. In Section 2,

we first discuss the MMSE shrinkage and tapering estimators.

We then derive the Frobenius risk and a lower on the spectral

risk for the MMSE shrinkage estimator and we show incon-

sistency of the shrinkage estimator. In Section 3, we propose

an alternative solution termed as shrinkage-to-tapering oracle

(STO) estimator. Simulations are conducted in Section 4 to

demonstrate the improved numeric performances of the pro-

posed estimator. Due to space limit, detail proofs in this paper

are omitted, and interested readers are referred to the journal

version [10] for details.

2. RISK BOUNDS OF SHRINKAGE AND TAPERING
ESTIMATORS

The main purpose of this section is to study and compare

the risk bounds of two important regularized covariance ma-

trix estimators. This serves as a motivation of the proposed

shrinkage-to-tapering estimator.
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2.1. Shrinkage Estimator

Chen et.al [6] define a minimum mean-squared error (MMSE)

oracle estimator as the solution of the optimization problem

minimizeρ∈[0,1] E
∥∥∥Σ̂(ρ) − Σ

∥∥∥2

F

subject to Σ̂ = (1 − ρ)Ŝ + ρF̂ . (2)

In words, the MMSE oracle estimator seeks the best con-

vex combination between the sample covariance matrix and a

scaled identity matrix to approximate the true covariance ma-

trix in terms of MSEs. This estimator is said to be an oracle

because the optimal solution depends on Σ which is unknown

in practice and is the estimation goal. Under additional Gaus-

sian assumption, the closed-form of ρo is given in [6]:

ρo =
p − 2 + pt

p(n + 1) − 2 + (p − n)t
,

where

t = Tr2(Σ)/Tr(Σ2).

Here t measures the distribution of the off-diagonal entries of

Σ. In particular,

Tr(Σ2) ≤ Tr2(Σ) ≤ pTr(Σ2),

where equalities of the left and right inequalities are attained

if and only if Σ = 11T and Σ = I , respectively. So when t =
1, the matrix entries have the most spread support (dense);

while when t = p, the energy of Σ concentrates on the diago-

nal (sparse).

We first give the Frobenius risk of the MMSE oracle esti-

mator (2), assuming that the data are from i.i.d. N(0, Σ).

Theorem 2.1. Suppose {xi}n
i=1 are i.i.d. Gaussian N(0, Σ).

The Frobenius risk of the MMSE shrinkage oracle estimator
(2) is given by

E‖Σ̂o − Σ‖2
F =

[
(1 − t

p
)ρo +

2
np

]
‖Σ‖2

F . (3)

Next, we also derive a lower bound on the risk under the

spectral norm.

Theorem 2.2. Suppose {xi}n
i=1 are i.i.d. Gaussian N(0, Σ).

The spectral risk of the MMSE shrinkage oracle estimator (2)
satisfies

E‖Σ̂o − Σ‖2 ≥ ρ2
o(1 − λmin(Σ))2. (4)

2.2. Tapering Estimation

Tapering estimator is defined through the covariance matrix
taper (CMT). More specifically, we let S be the set of p × p
symmetric matrix and A ◦ B be the Schur product of two

matrices A and B: A ◦ B = (aijbij). Then, we define

Definition 2.1. A covariance matrix taper (CMT) A is an el-

ement in S such that
∑p

j=1 λj(A ◦B) ≤ ∑p
j=1 λj(B) for all

B ∈ S. In other words, multiplication by any CMT decreases

the averaged eigenvalue.

Let W be a CMT; a tapering estimator of the covariance

matrix is defined as

Σ̂taper = W ◦ Ŝ. (5)

Coupled with tapering estimator, we consider the following

class of covariance matrices

G(α, C, C0) ={Σ : max
j

∑
|i−j|>k

|σij | ≤ Ck−α,∀k

and λmax(Σ) ≤ C0},
where C, C0 > 0 are some absolute constants and α > 0 is a

smoothing parameter specifying the rate of decay of σij from

the main diagonal. The following theorem, proved in [8],

shows that a covariance tapering estimator based on data gen-

erated from i.i.d N(0, Σ) with Σ ∈ G(α, C, C0) is minimax.

Theorem 2.3. (Cai, Zhang, and Zhou [8]) Suppose log p =
o(n) and p ≥ nξ for some ξ > 0; then we have the following
minimax convergence rate

1. under the Frobenius risk/normalized MSE:

p−1 inf
Σ̂

sup
Σ∈G(α,C,C0)

E‖Σ̂ − Σ‖2
F 
 n− 2α+1

2(α+1) ;

2. under the spectral risk:

inf
Σ̂

sup
Σ∈G(α,C,C0)

E‖Σ̂ − Σ‖2 
 n− 2α
2α+1 + log(p)/n.

2.3. Risk Bound Comparison Between Tapering and
Shrinakge Estimators

We consider two types of the covariance matrix structures:

one is in G(α, C, C0) and the other is not.

Example 2.1. Consider, for 0 < γ < 1,

σij =
{

1, for i = j,
γ|i−j|, for i �= j.

The entries of Σ decay exponentially fast when moving away

from the main diagonal and thus Σ ∈ G(α, C, C0) for every

α > 0. This example corresponds to the covariance structure

of auto-regression models with order 1, AR(1). For this Σ, it

can be shown that

p−1E‖Σ̂o − Σ‖2
F = C(γ) + o(1),

where C(γ) > 0 is a constant, independent of n. It is clear

that the normalized MSE is lower bounded by a positive con-

stant depending on γ and therefore the MMSE shrinkage or-

acle estimator cannot be a consistency estimator of Σ unless

the concentration p/n → 0. Fig. 1 plots the finite sample size

behavior of the normalized MSE and its limit.
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Fig. 1. Normalized MSE curves of the shrinkage MMSE estimator for the

large covariances discussed in Example 2.1. The MMSE estimator fails to be

consistent when n/p → 0, because the normalized Frobenius risks converge

to the asymptotic values that are bounded away from 0.

Example 2.2. In a second example, we consider the covari-

ance structure of a fractional Brownian motion (FBM) with

the Hurst parameter h ∈ [0.5, 1]:

σij = 2−1[(|i − j| + 1)2h − 2|i − j|2h + (|i − j| − 1)2h].

The FBM is a model for complex systems that have long-

range dependence for h being close to 1, such as modeling the

internet traffic [11]. A direct calculation shows that ‖Σ‖1 =
p2h and from this it easily follows that

max
j

∑
|i−j|≥1

|σij | ≥ p2h−1 − 1.

Therefore, we see that, when h > 0.5, Σ /∈ G(α, C, C0) for

any α > 0 and the minimax properties stated Theorem 2.3

does not necessarily hold.

3. SHRINKAGE-TO-TAPERING ESTIMATOR

Now, we propose a Steinian shrinkage type estimator. With

the important difference from the shrinkage estimator toward

a scaled identity matrix, the proposed estimator shrinks the

sample covariance matrix to its tapered version.

Σ̂(ρ) = (1 − ρ)Ŝ + ρ(W ◦ Ŝ),

where ρ is determined by the solution to the optimization

problem

minimizeρ∈[0,1] E‖Σ̂(ρ) − Σ‖2
F

subject to Σ̂(ρ) = (1 − ρ)Ŝ + ρ(W ◦ Ŝ).

For Σ ∈ G(α, C, C0), we can see from Theorem 2.3 that

the proposed shrinkage-to-tapering oracle (STO) estimator re-

duces to the tapering estimator for large n and p. While for

Σ /∈ G(α, C, C0), the proposed estimator reduces to an anal-

ogy of the MMSE shrinkage oracle estimator. Therefore, we

expect that, for an arbitrary large covariance matrix Σ, the

proposed estimator could improve upon both tapering and

MMSE shrinkage oracle estimators.

The optimal coefficient of the MMSE STO estimator can

be given in a closed-form.

Fig. 2. Model 1: The normalized MSE curves as a function of n, averaged

over 100 replications. The tapering [8], LW [5], RBLW [6], MMSE shrink-

age oracle (MMSEO) [6], and OAS [6] are compared with the proposed STO

and STOA estimators.

(a) ρ = 0.5 (b) ρ = 0.9

(c) ρ = 0.5 (d) ρ = 0.9

Theorem 3.1. The coefficient of the proposed STO estimator
under the minimum Frobenius risk is

ρ̂STO =
E(‖Ŝ‖2

F − ‖V ◦ Ŝ‖2
F ) − (‖Σ‖2

F − ‖V ◦ Σ‖2
F )

E‖Ŝ‖2
F + E‖W ◦ Ŝ‖2

F − 2E‖V ◦ Ŝ‖2
F

.

(6)

Under further Gaussian assumption, we can write (6) in a
closed-form given by

ρ̂STO =[‖Σ‖2
F + Tr2(Σ) − ‖V ◦ Σ‖2

F − Tr(DV 2D)] (7)/
[(n + 1)(‖Σ‖2

F + ‖W ◦ Σ‖2
F − 2‖V ◦ Σ‖2

F )

+ Tr2(Σ) + Tr(DW 2D) − 2Tr(DV 2D)].

Since the STO estimator depends on the unknown Σ, we

also present an iterative STO approximation (STOA) algo-

rithm. For details, please see [10].

4. SIMULATIONS

Simulations based on the two examples discussed in Sec-

tion 2 are performed to study the finite sample size nu-

meric performances of the proposed estimators. We fix

p = 100 for all models and consider different values of n
with n = {10, 20, 30, 40, 50}. The STOA algorithm is ini-

tialized at Σ̂0 = Ŝ and ρ = 0.5. The maximum number of

iterations in the STOA algorithm is set to be 10. We com-

pare the proposed STO estimator and its variant STOA with

the tapering [8] and several shrinkage estimators including
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the LW [5], Rao-Blackwellized LW (RBLW) [6], MMSE

shrinkage oracle (MMSEO) estimator and its variant oracle

approximating shrinkage (OAS) [6] estimator.

4.1. Model 1 - AR(1) model

We chose ρ = {0.5, 0.9}. Due to space limit, we only plot

the estimated normalized MSEs, i.e. the Frobenius risk in

Fig. 2 for different estimators. For the spectral risk, we refer

interested readers to the journal version [10].

Several interesting observations can be made from Fig. 2.

First, in terms of estimation risks, the STO, STOA, and

tapering estimators uniformly improve upon the previous

shrinkage-type estimators including LW, RBLW, OAS, and

the MMSEO. This validates our Theorem 2.1 on finite sam-

ple size data. The improvement is visually appreciable even

when n is not so large as considered in the asymptotic setup.

Second, the proposed STO and STOA also outperform the

tapering estimator, although the improvement is smaller than

those from the previous shrinkage-type estimators. Third, it is

clear from these two figures that STOA can well approximate

the STO estimator.

4.2. Model 2 - fractional Brownian motion

We simulate observations from the FBM covariance structure

with the Hurst parameter h selected from h = {0.6, 0.7, 0.8, 0.9}.

From Fig. 3, we can see that the normalized MSEs of the

MMSE shrinkage estimators are smaller than that of the taper-

ing estimator. This is not surprising because: (i) the assump-

tion Σ ∈ G(α, C, C0) is violated and therefore no optimality

under the Frobenius risk can be expected in the tapering es-

timator; (ii) the MMSE estimators are designed to minimize

the Frobenius risk. It is also observed that the STO and STOA

estimators uniformly outperform other shrinkage estimators

when h = 0.8 and h = 0.9. In the case of h = 0.6, they

are outperformed by LW, RBLW, OAS, and MMSEO estima-

tors but still yield smaller MSEs than the tapering estimator.

The case of h = 0.7 appears to be non-uniform; however the

curve trends shown in Fig 3(b) suggest that STO and STOA

may eventually yield a smaller Frobenius risk as n gets larger.

5. CONCLUSION

In this paper, we first show that the MMSE shrinkage oracle

estimator is inconsistent under both Frobenius and spectral

risks for some typical covariance matrices in G(α, C, C0). We

then propose a STO estimator that combines the advantages

from both the MMSE shrinkage and tapering estimators.
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