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ABSTRACT

In this paper we propose a generalized linear coordinate-descent
(GLiCD) algorithm for a class of unconstrained convex optimization
problems. The considered objective function can be decomposed
into edge-functions and node-functions of a graphical model. The
messages of the GLiCD algorithm are in a form of linear functions,
as compared to the min-sum algorithm of which the form of mes-
sages depends on the objective function. Thus, the implementation
of the GLiCD algorithm is much simpler than that of the min-sum
algorithm. A theorem is stated according to which the algorithm
converges to the optimal solution if the objective function satisfies
a diagonal-dominant condition. As an application, the GLiCD al-
gorithm is exploited in solving the averaging problem in sensor net-
works, where the performance is compared to that of the min-sum
algorithm.

Index Terms— Convex optimization, message passing, coordi-
nate decent

1. INTRODUCTION

Consider an optimization problem where the objective function can
be decomposed according to a undirected graph G = (V, E) so that

min
x∈X |V |

f(x) = min
x∈X |V |

∑
(i,j)∈E

fij(xi, xj) +
∑
i∈V

fi(xi). (1)

Every variable xi in the problem is associated with a node i ∈ V and
takes values in X . The variables contribute to the objective function
by interacting with their neighboring ones. Such problem formula-
tion has found many applications in practice, such as digital com-
munications [1], image processing [2], multi-user detection [3], and
consensus propagation in sensor networks [4]. In many applications
of interest, the graph is sparse. The research challenge is how to ex-
ploit the sparse geometry to efficiently obtain the optimal solution.

In this work, we consider the case where X = R, and the opti-
mization problem is continuous. In the literature, not much progress
has been obtained on designing efficient message-passing algorithms
for solving the general continuous problem (1). Instead, researchers
have focused on some special forms of (1). One instance is the prob-
lem with local quadratic functions {fij(·, ·)} and {fi(·)}. For the
quadratic optimization problem, the min-sum algorithm is known to
compute the optimal solution when it converges [5, 6]. A sufficient
condition of the min-sum algorithm for convergence has been iden-
tified in [7, 8]. Due to the quadratic form of the local functions, the
messages of the min-sum algorithm are also in a quadratic form. In
[9], the linear coordinate-descent (LiCD) algorithm was proposed
for the quadratic optimization, where the messages are in a linear

form. Further, the LiCD algorithm was shown to have the same suf-
ficient condition for convergence as that of the min-sum algorithm.

Recent work by Moallemi and Roy [10] applied the min-sum
algorithm to an unconstrained convex optimization problem. That
is, the local functions are convex. The authors established a suffi-
cient condition for the algorithm convergence. However, the form
of the messages depends on the objective function. In other words,
if the function is described by a set of parameters, the description
of the messages may also require the same number of parameters as
that of the set. This property may impose high communication cost
which is undesirable in, e.g., sensor-network related problems. It is,
therefore, of great interest to study whether there exists an efficient
message-passing algorithm of which the implementation-complexity
is much less influenced by the objective function.

In this paper we generalize the LiCD algorithm for solving un-
constrained convex optimization problems. At each iteration, the
generalized LiCD (GLiCD) algorithm updates messages based on
feedback from previous iteration. On the other hand, the LiCD al-
gorithm involves no feedback. The GLiCD algorithm maintains the
property that the messages are in a linear form. Thus, the algorithm
always has a simple implementation irrespective of the complexity
of the objective function.

We establish a sufficient condition for the convergence of the
GLiCD algorithm. In particular, when the objective function satis-
fies a diagonal-dominant condition, the GLiCD algorithm converges
to the optimal solution. In addition, we apply the GLiCD algorithm
to the averaging problem in sensor networks. We follow the line
of work in [4], where the min-sum algorithm is utilized in solving
the same problem. In the experiment, we study the efficiency of the
GLiCD algorithm with the min-sum algorithm as a reference. Exper-
imental results demonstrate that the algorithm efficiency improves as
the associated graph G becomes dense.

2. PROBLEM FORMULATION

In [10], the pairwise separable convex program was introduced. The
program specifies a broad class of unconstrained convex problems
for the application of the min-sum algorithm. In this work we also
consider the pairwise separable convex program, of which the defi-
nition is presented below.
Definition 2.1 [10] (Pairwise Separable Convex program): A pair-
wise separable convex program is an optimization problem of the
form

min
x∈R|V |

f(x)
Δ
=
∑
i∈V

fi(xi) +
∑

(i,j)∈E

fij(xi, xj) (2)

where the factors fi(·) are strictly convex, coercive1, and twice con-

1A function h : Rn → R is coercive if, for every sequence {xk} ⊂ R
n
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tinuously differentiable, the factors {fij(·, ·)} are convex and twice
continually differentiable, and

M
Δ
= min

i∈V
inf

x∈R|V |

∂2

∂x2
i

f(x) > 0.

The objective function f(x) specified by the program is strictly
convex and coercive. Thus, there exists a unique optimal solution
x∗ ∈ R

|V | that minimizes the objection function. The local func-
tions {fi(xi)} and {fij(xi, xj)} in (2) are called self-potentials and
edge-potentials, respectively. We use N(i) to denote the set of all
neighbors of node i. For each edge (i, j) ∈ E, we use [j, i] and [i, j]
to denote its two directed edges. Correspondingly, we denote the set
of all directed edges of the graph as �E.

In the following, we present the GLiCD algorithm for solv-
ing the pairwise separable convex program. We point out that the
quadratic problem considered in [9] is not a special case of the
pairwise separable convex program. The edge-potentials in (2) are
required to be convex while in [9] there is no explicit conditions on
the edge-potentials.

3. GENERALIZED LINEAR COORDINATE-DESCENT
ALGORITHM

In this section we present the GLiCD algorithm in detail. As a gener-
alization of the LiCD algorithm [9], the GLiCD algorithm incorpo-
rates feedback from last iteration in computing new messages. The
amount of feedback at each node is controlled by a set of parameters,
one for each neighbor.

3.1. Message updating expressions

The GLiCD algorithm attempts to minimize the objective function in
an iterative, message-passing fashion. At time t, each node i keeps
track of a message and an estimate of x∗

i from each neighbor u ∈
N(i). We denote the message and the estimate from node u to i

as m
(t)
ui (xi) and x̂

u(t)
i , respectively. In principle, the form of the

messages can be quite general. While the messages with a general
form may carry much information, the corresponding algorithm may
also be computationally expensive. For the GLiCD algorithm, we
suppose that the message m(t)

ui (xi), ∀ [u, i] ∈ �E, takes a linear form:

m
(t)
ui (xi) = z

(t)
ui xi, t = 0, 1, . . . (3)

The simplicity of the linear message-form is beneficial to the imple-
mentation of the algorithm.

With the messages (3), the pairwise separable function f(x) in
(2) can be reparameterized as

f(x) =
∑
i∈V

f
(t)
i (xi) +

∑
(i,j)∈E

f
(t)
ij (xi, xj),

where the new self-potentials and edge-potentials are given by

f
(t)
i (xi) = fi(xi) +

∑
u∈N(i)

z
(t)
ui xi, (4)

f
(t)
ij (xi, xj) = fij(xi, xj)− z

(t)
ji xi − z

(t)
ij xj . (5)

Thus, the objective function remains the same form irrespective of
the messages. To briefly summarize, each node i at time t has the pa-
rameters {z(t)ui , x̂

u(t)
i , u ∈ N(i)}. The estimates {x̂u(t)

i , u ∈ N(i)}
provide some information about the optimal solution x∗

i . Thus, the
estimates can be used as feedback in computing new messages and
estimates in next iteration.

We now consider utilizing the estimates {x̂u(t)
i } as feedback in

the derivation of {z(t+1)
ui } and {x̂

u(t+1)
i }. The basic idea is to ap-

ply the estimates to construct a penalty function for each edge in

with ‖xk‖ → ∞, h(xk) → ∞.

the graph. Then we use the constructed penalty functions and the
potentials (4)-(5) in computing the new messages and estimates. In
particular, we define the penalty function g

(t)
ij (xi, xj) for (i, j) ∈ E

to be a quadratic function:

g
(t)
ij (xi, xj) =

∑
u∈N(i)\j

η
u(t)
i

2
(xi − x̂

u(t)
i )2

+
∑

v∈N(j)\i

η
v(t)
j

2
(xj − x̂

v(t)
j )2, (6)

where the parameters ηu(t)
i and η

v(t)
j are the positive weighting fac-

tors for their corresponding quadratic terms. Note that the function
g
(t)
ij (·, ·) does not involve x̂j(t)

i and x̂
i(t)
j . If the node i only has edge

(i, j), then the function gij(xi, xj) reduces to g
(t)
ij (xj).

Upon introducing the penalty functions, we are ready to derive
the updating expressions for {z

(t+1)
uv (xv)} and {x̂

u(t+1)
v }. With-

out loss of generality, we focus on computing {z
(t+1)
ij , z

(t+1)
ji } and

{x̂
j(t+1)
i , z

i(t+1)
j } that are associated with the edge (i, j) ∈ E. In

doing so, we define a new function L
(t)
ij (xi, xj) for (i, j) ∈ E as

L
(t)
ij (xi, xj)

Δ
= f

(t)
i (xi) + f

(t)
j (xj) + f

(t)
ij (xi, xj) + g

(t)
ij (xi, xj).

From Definition 2.1, we see that L(t)
ij (·, ·) is strictly convex, coer-

cive and twice continually differentiable. We minimize the function
L

(t)
ij (·, ·) to compute the new estimates x̂j(t+1)

i and x̂
i(t+1)
j :(

x̂
j(t+1)
i , x̂

i(t+1)
j

)
= arg min

xi,xj

L
(t)
ij (xi, xj).

Due to the decomposed form of f(x), minimization of each Lij is
likely to minimize f(x)while at the same time keeping the estimates
from neighboring nodes close to each other. The partial derivatives
of L(t)

ij (·, ·) w.r.t. xi and xj satisfy

0 =
d

dxi

fi(x̂
j(t+1)
i ) +

∑
u∈N(i)\j

η
u(t)
i (x̂

j(t+1)
i − x̂

u(t)
i )

+
∑

u∈N(i)\j

z
(t)
ui +

∂

∂xi

fij(x̂
j(t+1)
i , x̂

i(t+1)
j ), (7)

0 =
d

dxj

fj(x̂
i(t+1)
j ) +

∑
v∈N(j)\i

η
v(t)
j (x̂

i(t+1)
j − x̂

v(t)
j )

+
∑

v∈N(j)\i

z
(t)
vj +

∂

∂xj

fij(x̂
j(t+1)
i , x̂

i(t+1)
j ). (8)

The above two equations are essentially the implicit updating ex-
pressions for x̂j(t+1)

i and x̂
i(t+1)
j , respectively.

Based on (7)-(8), we now derive the expressions for z(t+1)
ij and

z
(t+1)
ji . Note that the first three terms on the right hand side of (7)

only involves the variable xi. A similar property can be observed
from (8). It is the function fij(xi, xj) that brings xi and xj to-
gether, as the last term in (7) or in (8). To separate xi and xj in the
computation of (x̂j(t+1)

i , x̂
i(t+1)
j ), we define

z
(t+1)
ji =

∂

∂xi

fij(x̂
j(t+1)
i , x̂

i(t+1)
j ). (9)

z
(t+1)
ij =

∂

∂xj

fij(x̂
j(t+1)
i , x̂

i(t+1)
j ). (10)

The message z
(t+1)
ji brings all the information about x̂j(t+1)

i that is
contained at node j to node i. The messages associated with other
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edges in E take similar expressions as (9)-(10).
To complete the algorithm, we consider initializing the param-

eters {x̂
u(0)
v } and {z

(0)
uv (xv)}. In particular, we let x̂u(0)

v ∈ R,
∀[u, v] ∈ �E. We then compute the parameters {z(0)uv (xv)} according
to (9)-(10). With the initial estimates and messages, the algorithm
evolves according to (7)-(10). We use x̂(t) to denote the estimation
vector of {x̂v(t)

u }. The vector x̂(t) is of dimensionality | �E|. If the
GLiCD algorithm converges as t → ∞, we have

x̂(∞) = x∗
edge,

where x∗
edge is the corresponding optimal solution constructed from

x∗. In this situation, any element in {x̂
u(t)
i , u ∈ N(i)} is a good

estimate of the optimal solution x∗
i .

We point out when there is no penalty function involved in
L

(t)
ij (·, ·) (i.e., no feedback), the GLiCD algorithm degenerates to

the LiCD algorithm [9]. Thus, the GLiCD algorithm is more flex-
ible than the LiCD algorithm. The penalty function is imposed to
bring the solution x̂

j(t+1)
i close to {x̂

u(t)
i , u ∈ N(i)\j} for each

[j, i] ∈ �E. Further, large weighting factors {η
u(t)
i , u ∈ N(i)\j}

for the feedback {x̂
u(t)
i , u ∈ N(i)\j} enforce high influence on the

solution x̂
j(t+1)
i . Our objective to introduce the penalty function is

to make the solutions in the set {x̂u(n)
i , u ∈ N(i)} become more

and more close to each other for any i ∈ V as the algorithm evolves.
On the other hand, large weighting factors may negatively affect the
convergence speed of the GLiCD algorithm.

3.2. On Convergence of the GLiCD Algorithm

In this subsection, we study under what conditions the GLiCD al-
gorithm converges to the optimal solution x∗, i.e., limt→∞ x̂(t) =
x∗
edge.

We first introduce the pairwise diagonal dominance condition:
Definition 3.1 (Pairwise Diagonal Dominance): A pairwise separa-
ble continuous function f : R|V | → R is pairwise diagonally domi-
nant if

Ki
Δ
= inf

xi∈R

∂2

∂x2
i

fi(xi) > 0 (11)

and ∣∣∣∣ ∂2

∂xi∂xj

fij(xi, xj)

∣∣∣∣ ≤ ∂2

∂x2
i

fij(xi, xj) (12)

for all i ∈ V , (i, j) ∈ E and xi, xj ∈ R.

With the Definition 2.1 and 3.1, we are ready to present the con-
vergence result of GLiCD algorithm in a theorem below.

Theorem 3.1 Consider applying the GLiCD algorithm for a pair-
wise separable convex program with an objective function that is

pairwise diagonal dominant. For any x̂(0) ∈ R
|�E| and t ≥ 1, if the

weighting factors {ηu(t)
v } satisfy

ηu(k)
v ≥

∂2

∂x2
v

fuv(x̂
v(k)
u , x̂u(k)

v ) ∀[u, v] ∈ �E and k = 0, 1, . . . ,

(13)
there exist 0 ≤ λk < 1, k = 1, . . . , t, such that the estimation error
at time t is bounded by

‖x̂(t) − x∗
edge‖∞ ≤

(
t∏

k=1

λk

)
‖x̂(0) − x∗

edge‖∞. (14)

Hence, limt→∞ x̂(t) = x∗
edge.

The main idea of the proof is to show that the impact of the
initial estimate x̂(0) on x̂(t) decreases as the algorithm evolves. As a
result, the estimate x̂(t) converges to a fixed point. The parameters
λk correspond to the infinite norms of some matrices constructed by

the second derivatives of f(x) and the weighting factors. We will
present the proof in [11].

4. APPLICATION TO THE AVERAGING PROBLEM IN
SENSOR NETWORK

The averaging problem in sensor networks has received intensive
attentions in recent years (see [12] for an overview). This is because
the average operation can serve as a basis to solve more complicated
problems. In this section we consider applying the GLiCD algorithm
to the averaging problem in sensor networks.

We first formulate the averaging problem mathematically. Sup-
pose node i ∈ V obtains a scalar measurement yi ∈ R. We use ȳ to
denote the average of all the measurements, which is computed as

ȳ =
1

|V |

∑
i∈V

yi.

The research goal is to design a decentralized message-passing algo-
rithm such that in the end the average number ȳ is available at every
node.

We note that Moallemi and Roy applied the min-sum algorithm
to solve the averaging problem [4]. The basic idea of their work is to
convert the averaging problem into a convex optimization problem.
The min-sum algorithm is then applied to solve the new problem. In
particular, in [4], the self and edge potentials are defined as

fij(xi, xj)
Δ
=

α

2
(xi − xj)

2 i ∈ V (15)

fi(xi)
Δ
=

1

2
(xi − yi)

2 (i, j) ∈ E, (16)

where α is a free parameter. Denote the optimal solution that mini-
mizes the objective function f(x) constructed by (15)-(16) as xα. It
was shown in [4] that

∑
i x

α
i /|V | = ȳ and limα↑∞ xα

i = ȳ, for all
i ∈ V . The parameter α determines the accuracy of {xα

i , i ∈ V }
with respect to ȳ. Large α improves the accuracy for computing ȳ,
while at same time may slow down the convergence of the min-sum
algorithm.

In this paper, we consider the same objective function with the
self and edge potentials defined in (15)-(16), which is obviously pair-
wise diagonal dominant. In order to guarantee the convergence of
the GLiCD algorithm, we have to choose proper weighting factors
{η

v(k)
u }. Inserting (15) into (13) yields

ηv(k)
u ≥ α, ∀[v, u] ∈ �E, k = 0, 1, . . . (17)

Equation (17) implies that the lower bound is a constant for all the
weighting factors, which is due to the simplicity of the edge poten-
tials (15). It is clear from Theorem 3.1 that as long as (17) holds,
the GLiCD algorithm would converge to the optimal solution xα for
any initialization x̂(0).

It should be noted that the inequality (17) is only sufficient for
the convergence of the GLiCD algorithm. In other words, the lower
bound α for the weighting factors may not be tight. We show in the
following by experiment that there exist weighting factors smaller
than α for which the algorithm still converges.

4.1. Experimental comparison

It is clear that both the min-sum and the GLiCD algorithm con-
verge for the functional construction (15)-(16) in solving the aver-
aging problem. In this subsection we investigate the efficiency of
the GLiCD algorithm with the min-sum algorithm as a reference.

We test two graphical models in the experiment. The first one is
a planar grid of size 10 × 10. Correspondingly, there are 100 nodes
in total. Depending on the location of the nodes, each one of them
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Fig. 1. Performance comparison of the two algorithms for the two graph models, where α = 40.

may have two, three or four neighbors. The second one is a fully
connected graph with |V | = 20 and N(i) = 19, ∀i ∈ V . Thus,
the second graph is more dense. In the two graphical models, the
scalar measurements {yi, i ∈ V } were generated from a uniform
distribution U [0, 2].

Next we consider the implementation of the two algorithms. For
the GLiCD algorithm, we let the initial estimate x̂(0) = 0. Cor-
respondingly, zv(0)u = 0, ∀[v, u] ∈ �E. The initialization for the
min-sum algorithm is described in detail in [10]. In our experiment,
we let m̃(0)

ij (xj) = fij(0, xj), ∀[i, j] ∈ �E. Since all the edge po-

tentials are in a quadratic form, the messages {m̃(k)
ij } are quadratic

functions.
For each graphical model, we study the convergence speed of the

two algorithms forα = 40. The parameter α determines the distance
of xα

i , i ∈ V , to ȳ. We use σ to denote the standard derivation of xα,

i.e., σ =
√

1
|V |

∑
i∈|V |(x

α
i − ȳ)2. For the min-sum algorithm, we

evaluate the error ‖x̃(t)−xα‖∞ over time, where x̃(t) is the estima-
tion vector of xα in |V |-dimensional space. On the other hand, the
estimate x̂(t) in the GLiCD algorithm has different dimensionality
than that of xα. To make a fair comparison with the min-sum algo-
rithm, we compute a new estimation vector x̃(t) using x̂(t). That is
for each node i ∈ V , we obtain x̃

(t)
i = 1

|N(i)|

∑
u∈N(i) x̂

u(t)
i . With

the new estimate, we then compute the error in the infinite norm.
The experimental results for the two graphical models are provided
in Fig. 1.

It is seen from the figure that the weighting factor η influ-
ences the convergence speed of the GLiCD algorithm significantly.
Small weighting factor results in high convergence speed. For the
two graphical models, we found that there exist weighting factor
η smaller than α where the GLiCD algorithm converges. For the
planar grid model, the min-sum algorithm converges a bit faster than
the GLiCD algorithm, however, at the expense of high computation
and storage complexities. For the fully connected model, the two al-
gorithms are comparable w.r.t. the convergence speed. This suggests
that if a graph becomes more dense by introducing new edges, the
performance of the GLiCD algorithm is increasingly efficient. Due
to the quadratic form of the local functions, the min-sum algorithm
always doubles the message-transmission bandwidth of the GLiCD
algorithm for each iteration. Thus, the GLiCD algorithm may be a
better choice for some sensor-network topologies.

5. CONCLUSION

In this paper, we have proposed the GLiCD algorithm for the general
convex problems. Differently from the min-sum algorithm, the new
algorithm always has linear message form irrespective of the objec-

tive function. Therefore, GLiCD algorithm has lower computational
complexity and requires less storage capacity than the min-sum algo-
rithm. We have provided a sufficient condition for the convergence
of the GLiCD algorithm. We then successfully applied the GLiCD
algorithm to solve the averaging problem in sensor networks.
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