
LINEAR COORDINATE-DESCENT MESSAGE-PASSING FOR
QUADRATIC OPTIMIZATION

Guoqiang Zhang and Richard Heusdens

Department of Mediamatics
Delft University of Technology

Delft, the Netherlands
Email: {g.zhang-1,r.heusdens}@tudelft.nl

ABSTRACT

In this paper we propose a new message-passing algorithm for
quadratic optimization. The design of the new algorithm is based
on linear coordinate-descent between neighboring nodes. The up-
dating messages are in a form of linear functions as compared to the
min-sum algorithm of which the messages are in a form of quadratic
functions. Therefore, the linear coordinate-descent (LiCD) algo-
rithm has simpler updating rules than the min-sum algorithm. It
is shown that when the quadratic matrix is walk-summable, the
LiCD algorithm converges. As an application, the LiCD algorithm
is utilized in solving general linear systems. The performance of the
LiCD algorithm is found empirically to be comparable to that of the
min-sum algorithm, but at lower complexity in terms of computation
and storage.

Index Terms— Distributed optimization, message passing,
walk summable, coordinate decent

1. INTRODUCTION

In this paper we consider solving a quadratic optimization problem,
namely,

min
x∈Rn

f(x) = min
x∈Rn

(1
2
x
�
Jx− h

�
x
)
, (1)

where J ∈ R
n×n is a symmetric positive definite matrix and h ∈

R
n. Without loss of generality, we assume J has unit diagonal. It

is known that the optimal solution x∗ satisfies the linear equation
Jx∗ = h. We suppose that the matrix J is sparse and the dimension-
ality n is large. In this situation, direct computation (without using
the sparse structure of J) of the optimal solution may be expensive
and unscalable. One natural question is how to exploit the sparse
geometry to efficiently obtain the optimal solution. To achieve this
goal, the quadratic function f(x) can be decomposed in a pairwise
fashion according to an undirected graph G = (V,E), so that

f(x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E

fij(xi, xj).

The algorithms that exploit the sparse geometry exchange informa-
tion between nodes in the graph until reaching consensus.

As a popular algorithm, the min-sum message-passing for solv-
ing the quadratic optimization problem has been well studied. If the
graph has a tree structure (i.e., no loops involved), it is well known
that the min-sum algorithm converges to the optimal solution [1, 2].
The question of convergence to the optimal solution has proved dif-
ficult for loopy graph models. In [2, 3], it has been shown that if the
min-sum algorithm converges for general graphs, it computes the
optimal solution. In particular, Weiss and Freeman [2] established
a convergence condition where the quadratic matrix J is required to

be diagonally dominant1. Later on, Johnson et al. [4, 5] discovered
a more general convergence condition. They found that if the ma-
trix J is walk-summable2, the min-sum algorithm always converges.
Recent work by Moallemi and Roy provided a geometrical meaning
to the walk-summability of J [6]. In [7], the min-sum algorithm for
quadratic optimization was applied in solving general linear systems.

We point out that the updating messages of the min-sum algo-
rithm for solving the quadratic problem are in a form of quadratic
functions. This implies that a node has to transmit two coefficients
(one corresponds to the quadratic term and the other corresponds to
the linear term) for each message to its neighbors. One natural ques-
tion is if an efficient algorithm exits where the messages are in a
form of linear functions only. Linear-functional messages have sig-
nificant importance for sensor-network related problems, where the
transmission power and storage capacity are highly valuable.

In this paper we design a new algorithm with linear-functional
messages for the quadratic problem. The messages are updated by
performing linear coordinate-descent (LiCD) between neighboring
nodes in the graph. The design of the LiCD algorithm is inspired by
the block coordinate-descent (BCD) algorithms developed for dis-
crete graph models [8, 9, 10] (the variables take discrete values).
While the message forms of the BCD algorithms are determined by
the discrete alphabet, the LiCD algorithm explicitly imposes linear-
functional messages. The BCD algorithms require that the mes-
sages are updated asynchronously. The messages of the LiCD al-
gorithm, on the other hand, can be updated either in parallel or asyn-
chronously. To save space in the paper, we only consider parallel
message-updating for the LiCD algorithm.

We will show that when the matrix J is walk-summable, the
LiCD algorithm converges to the optimal solution. We emphasize
that the walk-summability of J is only a sufficient condition for the
algorithm convergence. In addition, we consider applying the LiCD
algorithm in solving general linear systems. We follow the line of
work in [7], where the min-sum algorithm is exploited in solving the
same problem. We found by experiment that the LiCD algorithm is
comparable to the min-sum algorithm in convergence speed, but has
a lower computational complexity and requires less storage capacity.

2. LINEAR COORDINATE-DESCENT ALGORITHM

In this section we first present the LiCD algorithm by deriving the
updating expressions. After that, we study the convergence of the
LiCD algorithm.

1The matrix J is diagonally dominant if |Jii| >
∑

j �=i |Jij | for all i.
2See subsection 2.4 for the definition of walk-summability. It can be

shown by algebra that if a matrix is diagonal dominant, then it is also walk-
summable.

2005978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

2.1. Message passing framework

Consider the quadratic objective function (1). Correspondingly, the
local functions are given by

fij(xi, xj) = Jijxixj ∀(i, j) ∈ E (2)

fi(xi) =
1

2
x
2
i − hixi ∀i ∈ V . (3)

The local functions fi and fij are often called self-potentials and
edge potentials, respectively. fij captures the interaction between
node i and j. For the quadratic problem, an edge between node i
and j exists in the graph only if Jij �= 0. We use N(i) to denote the
set of all neighbors of node i. For each edge (i, j) ∈ E, we use [j, i]
and [i, j] to denote its two directed edges. Correspondingly, we use
�E to denote the set of all directed edges.

The LiCD algorithm exchanges information between nodes iter-
atively until reaching consensus. In particular, at time t, each node i

collects incoming messages
{
m

(t)
ui (xi)|u ∈ N(i)

}
from all neigh-

boring nodes. These messages are then combined to produce new
outgoing messages, one for each neighbor u ∈ N(i). We suppose
that the message sent from node j to i at time t takes a linear form

m
(t)
ji (xi) = −z

(t)
ji xi. (4)

The new self and edge potentials at time t can be defined as

f
(t)
ij (xi, xj) = Jijxixj + z

(t)
ji xi + z

(t)
ij xj ∀(i, j) ∈ E (5)

f
(t)
i (xi) =

1

2
x
2
i −

⎛
⎝hi +

∑
u∈N(i)

z
(t)
ui

⎞
⎠xi ∀i ∈ V. (6)

It is straightforward that

f(x) =
∑
i∈V

f
(t)
i (xi) +

∑
(i,j)∈E

f
(t)
ij (xi, xj). (7)

Thus, the overall objective function remains the same. The new po-
tentials (5)-(6) can be viewed as a reformulation of the objective
function.

At time t, each node computes an estimate of its variable by
minimizing the self-potential:

x̂
(t)
i = argmin

xi

f
(t)
i (xi) i ∈ V. (8)

If the LiCD algorithm converges to the optimal solution x∗, we have

lim
t→∞

x̂
(t)
i = x

∗
i ∀i ∈ V.

2.2. Updating expressions

The LiCD algorithm performs pairwise minimizations between
neighboring nodes in computing new messages. In this subsection,
we compute the updating expressions for the messages.

Without loss of generality, we focus on deriving the expressions
for z(t+1)

ji and z
(t+1)
ij , (i, j) ∈ E, given the potential functions at

time t. Before going to the details, we first present the basic idea of
the linear coordinate-descent. In computing {z

(t+1)
ji , z

(t+1)
ij }, node

i and j build a joint function L
(t)
ij (xi, xj) defined as

L
(t)
ij (xi, xj) = f

(t)
i (xi) + f

(t)
j (xj) + f

(t)
ij (xi, xj).

This particular form of the joint function is motivated from the fact

that L(t)
ij (xi, xj) is a sub-summation of (7) for the objective func-

tion f(x). As a result, L(t)
ij (xi, xj) does not involve z

(t)
ij and z

(t)
ji

any more. We first minimize L
(t)
ij (xi, xj) over {xi, xj}. Denote

the resulting optimal solution as {x̂j,(t+1)
i , x̂

i,(t+1)
j }, where the su-

perscript j (or i) indicates that the estimate x̂
j,(t+1)
i (or x̂i,(t+1)

j) is
computed by utilizing the information from node j (or node i). After
obtaining x̂

j,(t+1)
i , we then choose z

(t+1)
ji such that

x̂
j,(t+1)
i = argmin

xi

⎛
⎝1

2
x
2
i −

(
hi +

∑
u∈N(i)\j

z
(t)
ui + z

(t+1)
ji

)
xi

⎞
⎠ .

The estimate x̂
j,(t+1)
i is different from x̂

(t)
i in (8). The parameter

z
(t+1)
ji brings all the information about x̂j,(t+1)

i that is contained in
node j to node i. Since we only operate on the linear terms of the
potential functions, this is how the name linear coordinate-descent
comes up.

Based on the above computation guidline, we derive the ex-
pressions for z

(t+1)
ij and z

(t+1)
ji . From (5)-(6), the expression for

L
(t)
ij (xi, xj) is given by

L
(t)
ij (xi, xj) =

1

2

(
xi xj

) [1 Jij

Jij 1

](
xi

xj

)

−
(
hi +

∑
u∈N(i)\j z

(t)
ui hj +

∑
v∈N(j)\i z

(t)
vj

)(
xi

xj

)
.

As the 2× 2 quadratic matrix of L(t)
ij (xi, xj) is positive definite, the

optimal solution (x̂
j,(t+1)
i , x̂

i,(t+1)
j) is finite. By computation, the

expressions for z(t+1)
ji and z

(t+1)
ij are given by

z
(t+1)
ji

=
Jij

1− J2
ij

⎛
⎝Jij

(
hi +

∑
u∈N(i)\j

z
(t)
ui

)
−
(
hj +

∑
v∈N(j)\i

z
(t)
vj

)⎞⎠(9)

z
(t+1)
ij

=
Jij

1− J2
ij

⎛
⎝Jij

(
hj +

∑
v∈N(j)\i

z
(t)
vj

)
−
(
hi +

∑
u∈N(i)\j

z
(t)
ui

)⎞⎠ .(10)

The updating expressions for other parameters {z
(t+1)
kl , z

(t+1)
lk ,

(k, l) ∈ E} take similar forms as in (9)-(10).

2.3. Algorithm implementation

In the implementation of the LiCD algorithm, we let z(0)ji ∈ R for all

[j, i] ∈ �E. As the messages evolve according to (9)-(10) over time,
each node keeps track of the most recent parameters from neighbor-
ing nodes, one from each neighbor. Compared to that of the min-sum
algorithm, this operation is obviously memory-efficient. At each
time, a node computes an estimate of its variable by applying (8):

x̂
(t)
i = hi +

∑
u∈N(i)

z
(t)
ui ∀i ∈ V, t = 0, 1, . . . (11)

If the algorithm converges, the parameters {zij} and the estimates
{x̂i} would be stable after some time. Thus one can terminate the
iteration by examining {zij} and/or {x̂i}. Alternatively, one can
define a termination criterion by involving x̂

(t)
i and x∗

i . In particular,

2006

one can check the error ε(t) = ‖x̂(t) − x∗‖∞ at the end of iteration
t, t = 1, 2, We briefly summarize the algorithm in Table 1.

Stage Operation
1 Initialize zij ∈ R, ∀[i, j] ∈ �E

2
Iterate For all [i, j] ∈ �E

Update zij using (10).
End

3
Check If {x̂(t)

i } or {ε(t)} have
converged, go to 4; else, return to 2.

4 Output Return x̂i, ∀i.

Table 1. LiCD message-passing for computing x∗ =
argminx

1
2
x�Jx− h�x.

2.4. On convergence of the LiCD algorithm

The walk-summability of J was originally discovered as a sufficient
condition for the convergence of the min-sum algorithm [4, 5, 6].
We show in the following that the walk-summability of J is also a
sufficient condition for the LiCD algorithm to converge. For com-
pleteness, we provide the definition of the walk-summability below.

Definition 2.1 [4, 5] A positive definite matrix J ∈ R
n×n, with all

ones on its diagonal, is walk-summable if the spectral radius of the
matrix R̄, where R = I − J and R̄ = [|Rij |]

n

i,j=1 , is less than one
(i.e., ρ(R̄) < 1).

We briefly describe how the walk-summability of J is con-
nected to the optimal solution of the quadratic problem (see [4, 5]
for detailed information). First, note that the optimal solution for the
quadratic optimization problem (1) is given by

x
∗ = J

−1
h = (I −R)−1

h.

If we assume that the matrix R̄ has spectral radius less than 1, then
the spectral radius ofR is also less than 1 (i.e., ρ(R) < 1). Under the
condition ρ(R) < 1, we may express the solution x∗ by the infinite
series

x
∗ =

∞∑
t=0

R
t
h, (12)

where Rii = 0 and Rij = −Jij , if i �= j. The condition ρ(R̄) <
1 guarantees that the series

∑∞
t=0R

t is absolutely convergent. In
other words, the convergence of

∑∞
t=0 R

t does not depend on how
its components are arranged in the summation. By establishing the
equivalence between the iterates (9)-(11) and (12) when ρ(R̄) < 1,
we then obtain the convergence results. We present the results in two
theorems below: one for the special initialization {z

(0)
ij = 0} and the

other for a general initialization.

Theorem 2.2 If the quadratic matrix J in (1) is walk-summable
(i.e., ρ(R̄) < 1) and z

(0)
ij = 0 for all [i, j] ∈ �E, then the iterates of

the LiCD algorithm satisfy

‖x̂(t) − x
∗‖2 ≤

ρ(R̄)t+1

1− ρ(R̄)
‖h̄‖2, (13)

where h̄ = [|hi|].

Theorem 2.3 If the quadratic matrix J in (1) is walk-summable
(i.e., ρ(R̄) < 1) and z

(0)
ij ∈ R for all [i, j] ∈ �E, then the LiCD

algorithm converges to the optimal solution x∗, i.e., x̂(t)
i → x∗

i for
all i ∈ V .

As the proofs for the two theorems are rather long, we will
present them in [11].

3. APPLICATION TO GENERAL LINEAR SYSTEMS

It is known that solving a general linear system of equations (possi-
bly over-constrained) is a fundamental problem in computer science
and engineering. Recently, the min-sum algorithm has been success-
fully applied for the problem [12, 7]. As an alternative solution, we
consider applying the LiCD algorithm in solving the same problem.
In particular, we focus on the efficiency of the LiCD algorithm.

Suppose A ∈ R
n×k, n ≥ k, is full column rank matrix. For

a given shift vector b ∈ R
n×1, we consider solving the following

linear least square problem

x
∗ = argmin

x
‖Ax− b‖22,

where the vector x is of dimensionality k. By using algebra, it is
straightforward that the optimal solution is given by

x
∗ = (A�

A)−1
A

�
b. (14)

We let J = (A�A). The matrix J is positive definite, but not nec-
essarily walk-summable. Thus, the convergence of the LiCD or the
min-sum algorithm is not guaranteed here.

3.1. Scheme 1

In [7], the linear equation (14) was relaxed to a sequence of linear
equations

x̂
(t+1) = (J + αI)−1(A�

b+ αx̂
(t)) t = 0, 1, . . . , (15)

where α > 0 is a free parameter. We refer to the construction (15)
as Scheme 1. Denote Jα = J + αI . It was shown in [7] that by
following the iteration (15), x̂(t) converges to the solution (14) for
any initialization x̂(0). Given x̂(t) at time t, the new estimate x̂(t+1)

is computed by exploiting the min-sum algorithm. To guarantee the
convergence of the min-sum algorithm, α is chosen to ensure that
Jα is walk-summable. This approach involves two loops: the outer
loop follows the iteration (15), and the inner loop implements the
min-sum algorithm for each time step in (15).

Correspondingly, we use the same iteration (15) in our work.
Then at time t in (15), we apply the LiCD algorithm to compute
x̂(t+1). In order to use (9)-(11), (15) is rescaled to make Jα unit
diagonal. Since α is chosen such that Jα is walk-summable, the
LiCD algorithm always converges.

3.2. Scheme 2

Note that Scheme 1 requires the pre-computation of J and A�b.
To avoid such computation, another construction of linear equations
was proposed in [12, 7]. The basic idea is to introduce an auxiliary
vector z ∈ R

n×1 in addition to x. With the new variable vector
y = [x�, z�]�, the computation for x∗ in (14) is realized by solving
a new sequence of linear equations

J̃αŷ
(t+1) = h

(t)
, t = 0, 1, . . . , (16)

where

J̃α =

(
Ik×k A�

A −αIn×n

)
∈ R

(k+n)×(k+n)

ŷ
(t+1) = [x̂(t+1)� ẑ(t+1)]�

h
(t) = [x̂(t)� b�]�.

The two iterations (15) and (16) are equivalent in computing x̂(t+1).
At time t, the min-sum algorithm is used to compute ŷ(t+1) given

2007

h(t) in [7]. We refer to the construction (16) as Scheme 2.
In the following, we consider applying the LiCD algorithm to

compute ŷ(t+1) given h(t) in (16). Since J̃α is not positive definite,
Theorem 2.2 or 2.3 cannot be directly applied here. We briefly ar-
gue that for large enough α, the LiCD algorithm still converges by
following (9)-(11). To apply (9)-(10), (16) is rescaled such that the
rescaled matrix J̆α has unit diagonal. In particular, J̆α takes the form

J̆α =

(
Ik×k

1√
α
A�i

1√
α
Ai In×n

)
∈ C

(k+n)×(k+n)
,

where i represents the imaginary symbol. Define R̆α
Δ
= I − J̆α and

R̄α
Δ
= [|R̆α,ij |]. It is clear that for large enough α, there is ρ(R̄α) <

1. By following the same argument as was used in Theorem 2.2 and
2.3, it can be shown that the LiCD algorithm converges by following
(9)-(11).

3.3. Experimental results

It is clear that the min-sum and the LiCD algorithm have the same
applicability. In this subsection we study the efficiency of the LiCD
algorithm with the min-sum algorithm as a reference.

In the experiment, we let n = 20 and k = 5. The components
in A and b were generated from the uniform distribution U(0, 1). To
terminate the iterations of the two algorithms, the error of the esti-
mate w.r.t. its optimal solution was measured. Convergence thresh-
old for the outer and inner loops were set as 10−5 and 10−10, re-
spectively.

In the first experiment, we tested the two algorithms for five dif-
ferent linear systems (different realizations of A and b). For each
linear system, the parameter α was chosen such that Jα is walk-
summable. The results are displayed in Table. 2. It is seen that the
performance of the two algorithms is comparable. Other linear sys-
tems (different parameters A and b) were also tested, of which the
performance is similar to Table 2.

1 2 3 4 5

S1 LiCD 6866 4125 5697 6335 7216
min-sum 7073 4200 5783 6503 7182

S2 LiCD 14131 8470 11318 12273 14886
min-sum 13153 7772 10437 11179 13395

Table 2. Number of iterations of the two algorithms under the two
schemes. In particular, S1 stands for Scheme 1, and S2 stands for
Scheme 2.

In the second experiment, we study the impact of the parameter
α on the performance of the two algorithms. In doing so, we focus
on a particular linear system (A, b). The results are displayed in
Fig. 1. One observes that Scheme 2 always need more iterations
than Scheme 1. Also, there exists a particular value for α where the
two algorithms are most efficient for each scheme.

4. CONCLUSION

We have proposed a new message-passing algorithm for quadratic
optimization by performing linear coordinate-decent operations.
Compared to the min-sum algorithm of which the messages are
quadratic functions, the LiCD algorithm has linear-functional mes-
sages. Thus, the LiCD algorithm saves half of the transmission
bandwidth used for the min-sum algorithm for each iteration. Fur-
ther, we have shown that the LiCD has the same convergence con-
dition as the min-sum algorithm. Finally we successfully applied

0 50 100 150 200 250 300

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

LiCD Alg.

min-sum Alg.

Scheme 1

Scheme 2

Parameter α

It
er

at
io

ns

Fig. 1. Impact of the parameter α on the performance of the two
algorithms.

the LiCD algorithm in solving general linear systems, of which the
performance is comparable to that of the min-sum algorithm.

5. REFERENCES

[1] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference,” Morgan Kaufman Publishers,
1988.

[2] Y. Weiss and W. T. Freeman, “Correctness of Belief Propa-
gation in Gaussian Graphical Models of Arbitrary Topology,”
Neural Computation, vol. 13, pp. 2173–2200, 2001.

[3] P. Rusmevichientong and B. Ban Roy, “An analysis of Belief
Propagation on the Turbo Decoding Graph with Gaussian Den-
sities,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 745–765,
2001.

[4] J. K. Johnson, D. M. Malioutov, and A. S. Willsky, “Walk-sum
Interpretation and Analysis of Gaussian Belief Propagation,”
in Advances in Neural Information Processing Systems, Cam-
bridge, MA: MIT Press, 2006, vol. 18.

[5] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-
Sums and Belief Propagation in Gaussian Graphical Models,”
J. Mach. Learn. Res., vol. 7, pp. 2031–2064, 2006.

[6] C. C. Moallemi and B. Van Roy, “Convergence of Min-Sum
Message Passing for Quadratic Optimization,” IEEE Trans.
Inf. Theory, vol. 55, no. 5, pp. 2413–2423, 2009.

[7] J. K. Johnson, D. Bickson, and D. Dolev, “Fixing Convergence
of Gaussian Belief Propagation,” in the International Sympo-
sium on Information Theory, 2009.

[8] A. Globerson and T. Jaakkola, “Fixing Max-Product: Conver-
gent Message Passing Algorithms for MAP LP-Relaxations,”
Advances in Neural Information Processing Systems 21.

[9] D. Sontag, T. Meltzer, A. Globerson, Y. Weiss, and T. Jaakkola,
“Tightening LP Relaxations for MAP using Message-Passing,”
in UAI, 2008.

[10] D. Sontag, A. Globerson, and T. Jaakkola, “Introduction to
Dual Decomposition for Inference,” in Optimization for Ma-
chine Learning. 2011, MIT Press.

[11] G. Zhang and R. Heusdens, “Linear Coordinate-Descent
Message-Passing for Quadratic Optimization,” in preparation
for submission to Neural Computation.

[12] D. Bickson, D. Dolev, O. Shental, P. H. Siegel, and J. K. Wolf,
“Gaussian Belief Propagation Based Multiuser Detection,” in
IEEE International Symposium on Information Theory, 2008,
pp. 1878–1882.

2008

