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ABSTRACT

Learning based on kernel machines is widely known as a
powerful tool for various fields of information science includ-
ing signal processing such as function estimation from finite
sampling points. One of central topics of kernel machines is
model selection, especially selection of a kernel or its param-
eters. In our previous works, we investigated the generaliza-
tion error of a model space itself corresponding to a selected
kernel in kernel regressors. In this paper, we discuss the gen-
eralization error in a model space corresponding to a selected
kernel in kernel regressors; and prove that the variance of a
learning result is reduced when we adopt a kernel correspond-
ing to a larger reproducing kernel Hilbert space.

Index Terms— kernel machines, model selection, gener-
alization error, orthogonal projection, variance

1. INTRODUCTION

Learning based on kernel machines [1], represented by the
support vector machine [2] and the kernel ridge regression
[3, 4], is widely known as a powerful tool for various fields
of information science such as pattern recognition, regression
estimation, and density estimation. Moreover, these tech-
niques are also important in the fields of signal processing,
represented by sampling theorems aiming to reconstruct sig-
nals from finite sampling points. In general, an appropriate
model selection, aiming to minimize generalization error, is
required in order to obtain a desirable learning result by ker-
nel machines. Although many methods for model selection
have been proposed (see [5] for instance), theoretical analyses
of generalization error are still important since they may be
useful for construction or analysis of model selection meth-
ods. Generalization error can be decomposed into two com-
ponents. One is the error of a model space itself, that is, the
distance between an unknown true function and the model
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space, and the other is an error in the model space, that is,
the distance between a learning result and the orthogonal pro-
jection of the unknown true function onto the model space.
In our previous work [6], we investigated the former one and
proved that a kernel corresponding to the smallest reproduc-
ing kernel Hilbert space (RKHS), including an unknown true
function, gives the best model space among a class of nested
RKHS’s with an invariant metric. Moreover, we also clarified
in [7] that an invariant metric is a crucial condition for this
property. On the other hand, the behavior of the latter gener-
alization error with respect to a kernel or its parameters is not
discussed sufficiently, while that with respect to training data
set was sufficiently investigated (see [8] for instance).

In this paper, we consider a class of kernels corresponding
to a nested class of RKHS’s with an invariant metric as the
same with [6] and analyze the latter generalization error for
those RKHS’s. On the basis of our analyses, we prove that
the latter generalization error can be reduced when we adopt
a kernel corresponding to a larger RKHS.

2. OVERVIEW OF THE THEORY OF
REPRODUCING KERNEL HILBERT SPACES

In this section, we give an overview of the theory of repro-
ducing kernel Hilbert spaces [9, 10].

Definition 1 [9] Let R" be an n-dimensional real vector
space and let H be a class of functions defined on D C R",
forming a Hilbert space of real-valued functions. The func-
tion K(x, &), (x,& € D) is called a reproducing kernel of
H, if

1. Forevery fixed & € D, K(-, ) is a function belonging
to 'H.

2. Forevery fixed & € D and every fixed f(-) € H,

f@) = (FC), K 2)m, (1)
where (-, )y denotes the inner product of the Hilbert
space H.
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The Hilbert space that has a reproducing kernel K is
called a reproducing kernel Hilbert space (RKHS), denoted
by Hx. The reproducing property Eq.(1) enables us to treat a
value of a function at a point in D while we can not deal with
a value of a function in a general Hilbert space such as L2,
Note that reproducing kernels are positive definite [9]:

N
Z cich(:ci,wj) Z 07 (2)
i,j=1

for any N, c1,...,cy € R,and x1,...,zxy € D. In ad-

dition, K(z,z) = K(&,z) for any «,& € D is followed

[9]. If a reproducing kernel K (x, &) exists, it is unique [9].

Conversely, every positive definite function K (x, &) has the

unique corresponding RKHS [9].

Next, we introduce the Schatten product [11] that is a con-
venient tool to reveal the reproducing property of kernels.

Definition 2 [/1] Let H1 and Hs be Hilbert spaces. The
Schatten product of g € Ha and h € 'Hy is defined by

(g®h)f: <fah‘>7‘[1g7 fEHl- 3)

Note that (¢ ® h) is a linear operator from H; onto Hs.
It is easy to show that the following relations hold for h,v €
Hi, g,u € Ho.

(h@g)" = (9®@h), (h®@g)(u®v) = (u,g)n,(hev), (4)

where the superscript * denotes the adjoint operator.

3. FORMULATION OF LEARNING PROBLEMS

Let {(yx,xr) | kK € {1,...,¢}} be a given training data set
with an output value y, € R and the corresponding input
vector x;, € R", satisfying

yr = f(xr) + ng, )

where f(-) denotes an unknown true function and n, denotes
a zero-mean additive noise. In pattern recognition problems,
yr. denotes a class label, and in regression estimation prob-
lems, it denotes a value of the function f(-) at the point
with additive noise. The aim of machine learning is to esti-
mate the unknown true function f(-) by using the given train-
ing data set and statistical properties of the noise.

In this paper, we assume that the unknown true function
f(-) belongs to the RKHS H ¢ corresponding to a certain ker-
nel K. If f € Hg, then Eq.(5) is rewritten as

Yi = <f()7K(7wl)>HK + M, (6)

on the basis of the reproducing property of kernels. Let y =
[y1,.-.,y¢] and n = [nq,...,ng]" with the superscript ' de-
noting the transposition operator for a matrix (or a vector),
then applying the Schatten product to Eq.(6) yields

¢
y= (Z[e&f) ®K<-7wk>1> )+, @

k=1
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where e,(f) denotes the k-th vector of the canonical basis of

RY. For convenience of description, we write

Y4
Agx = (Z[ei“ @ K(, m]) : @)

k=1

where X = {x;, € RY| k € {1,...,¢}} be input training
data set. A x is a linear operator that maps an element in
Hy onto RY and Eq.(7) can be written by

y=Ax xf()+n, 9

which represents the relation between the unknown true func-
tion f(-) and an output vector y. The information of in-
put vectors is integrated in the operator Ax x. Therefore, a
machine learning problem can be interpreted as an inversion
problem of the linear equation Eq.(9) [12].

4. GENERALIZATION ERROR IN A MODEL SPACE

As is well known, the minimum-norm least-squares solution
of Eq.(9) is given as

F() =A% xy = Al x Ak x [() + A yn (10)

where A}ﬁ x denotes the Moore-Penrose generalized inverse
operator of Ax x [13]. Note that P x = A}'(XAK}X is
the orthogonal projector onto the model space R(A*K ) (the
range space of A;(’ ) which is the linear subspace in Hx
spanned by {K (-, xx) | k € {1,...,¢}}.

In general, the generalization error of a learning result is
defined by ||f() — f()H%K where || - ||7, denotes the in-
duced norm of Hg. According to the Pythagorean theorem,
we have

1£C) = FOllee
= |IfO) = PSR + 1P FC) = FOlle
= FC) = P f Ol + A% xnlle - (11)

The first term in Eq.(11) can be regarded as the generalization
error of the model space R(A% ), which is the squared dis-
tance between the unknown true function f(-) and the model
space R(A% x) whose behavior with respect to a kernel was
discussed in [6].

On the other hand, the second term in Eq.(11) can be re-
garded as the generalization error in a model space R(A} X)s
which is the target of our analysis in this paper. Applying
Eq.(4) to the equation Ay = Af y(Ax x A% x)* yields

4
Al x = <Z[K () ® e§f’]> Ghx. (12

k=1



where G i x denotes the Gramian matrix of K with X de-
fined as G, x = (K (x;,x;)). Therefore, we have

l
(Z[K( K © el >J) Gl xm

k=1

+ _
AK,Xn =

¢
Z”J KX )i K (-, )

1 k=1

[
MN

<.
Il

and

J(K,X;n)
= ||A1+<X"H${K = <A1+<,X"aA1+<,Xn>HK
0
= Z nj(G—IZ,X)jan(G;,X)St
7,k,s,t=1
X<K('7wk)7K("wt)>HK
0
= Y (G )i (G x)st(Gr x)
J K,X JkTts K,X)st K, X )kt

7,k,s,t=1

= nGKXGKXGKXn—nGKXn

<K('>wk)’ K('a mt))HK = K(wk?wt)

holds and a Gramian matrix is symmetric.

5. ANALYSES OF GENERALIZATION ERROR
WITH NESTED RKHS’S

In this section, we consider a class of kernels forming a nested
class of RKHS’s with an invariant metric and analyze the gen-
eralization error in a model space defined in the previous sec-
tion with those kernels.

Let K; and K be kernels corresponding to RKHS’s H g,
and H,, satisfying

Hr, C Hx, (13)

and
1F O, = 1P O, (14)

forany f(-) € Hg,-
The following theorems hold for kernels corresponding to
nested class of RKHS’s.

Theorem 1 [9] If K is the reproducing kernel of the class F'
with the norm || - ||, and if the linear class Fy C F forms a
Hilbert space with the norm || - ||1, such that || f||1 > || f]| for
any [ € F1y, then the class Fy possesses a reproducing kernel
K1 such that K¢ = K — K is also a reproducing kernel.

Theorem 2 [9] If K and K are the reproducing kernels of
the classes of F' and Fy with the norms || - 1, and if
K — K, is a reproducing kernel, then F, C F and || f1]]1 >
|[f1]| for every f1 € F.
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From Theorem 1 and Eq.(14), it is trivial that

Ky =K+ K¢ (15)
holds with a certain kernel K ¢. Therefore, we have
Gk, x =Gk, x +Gre x (16)

Here, we introduce the following lemma.

Lemma 1 [6] Let Hy, Hs be Hermitian matrices and lety €
R(Hy), then

Yy (H — (Hy + H2)T)y >0 (17)

holds.

The following theorem is the main result in this paper.

Theorem 3 Let Ky and Ko be kernels satisfying Eqs.(13)
and (14); and let X = {xz, € RY | k € {1,...,0}} and
n € R be an arbitrary set of input training vectors and an
arbitrary noise vector, respectively. If G, x is non-singular,

(18)

1A%, xlle, = 1A%, xnlli,.,
holds.

Proof From the assumption Eq.(14) and the trivial fact that
R(A%, x) = R(A%, x) C Hg, holds, we have

145, xmlB,, = 145

2
Kl,XnHHKI'

Therefore, for any n € R! = R(Gky.x),

1A%, xnllf,., — 1A%,
= 1A%, xnll., — 1A%, xnllf,,
= n’GI_(an—n’GI_(;Xn

= nl(Gl_(i,X — (G, x +Gge x)~

is obtained by Lemma 1, which concludes the proof. O

2
Xn||HK2

Yn >0

From Theorem 3, it is concluded that when we adopt a
kernel corresponding to a larger RKHS, the generalization er-
ror in the model space is reduced, while the contrary con-
clusion was obtained for the generalization error of a model
space as shown in [6].

This result can be trivially extended to the variance of the
generalization error in a model space as follows.

Corollary 1 Under the conditions in Theorem 3,

EnHA;r(l,XaniKz > EnHA}EQ,Xan‘[KZ

19)

holds, where En, denotes the expectation operator over the
random vector n.



Note that it is not guaranteed that Eq.(18) holds when the
metrics of H g, and H,, differ. In fact, Theorem 2 implies

HA}thH%{K] 2 HA}FQ,X”H%‘(KQ? (20)

which may break the proof of Theorem 3. When a nested
class of RKHS’s does not have an invariant metric, the gener-
alization error in a model space R(AJ, ) evaluated in H,
is reduced to

4%, x 7,
4

= Y mi(GE )ins(Grl x)st

7,k,s,t=1
X (K1 (), Ki(s @) re,
= n/Ggl G, xGx! xn,

where G K,,x denotes the Gramian matrix of K; with X eval-
uated in H g, defined as

éKl;X = ((Kl('7wi)7K1('7mj)>HK2)' (21)
Therefore, we have
1A%, x P, — 1A%, xnll7,
= n’G;(i)Xn — n'G;(;Xn
= n/(Gg xGr xGr) x — Gy x)n.
Let R
M =Gyl xGi, xGr x —Ggl x. (22)

If all eigenvalues of M are non-negative, it is concluded that
the same result with Theorem 3 is obtained for variant metric
cases. On the other hand, if there exist negative eigenvalues in
M, it implies that Theorem 3 does not hold for variant metric
cases. We conducted some numerical experiments for eigen-
structure of M with Gaussian kernels which form a nested
class of RKHS’s with variant metrics as shown in [7]. How-
ever, we could not find a case where M has negative eigen-
values. Theoretical analyses for this issue is one of our future
works.

6. CONCLUSION

In this paper, we discussed the generalization error in a model
space of kernel regressors and showed that the generalization
error in a model space is reduced when we adopt a kernel
corresponding to a larger reproducing kernel Hilbert space
among a class of kernels forming a class of nested reproduc-
ing kernel Hilbert spaces with an invariant metric, which is
a contrary conclusion for the generalization error of a model
space. Theoretical analyses for a class of RKHS’s with vari-
ant metrics and extension of our result for useful kernel ma-
chines such as support vector machines and kernel ridge re-
gressors is one of our future works to be undertaken.

2004

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

7. REFERENCES

K. Muller, S. Mika, G. Ratsch, K. Tsuda, and
B. Scholkopf, “An Introduction to Kernel-based Learn-

ing Algorithms,” [EEE Transactions on Neural Net-
works, vol. 12, pp. 181-201, 2001.

V. N. Vapnik, The Nature of Statistical Learning Theory,
Springer, New York, 1999.

J. Shawe-Taylor and N. Cristianini, Kernel Methods for
Pattern Recognition, Cambridge University Press, Cam-
bridge, 2004.

N. Cristianini and J. Shawe-Taylor, An Introduction
to Support Vector Machines and Other Kernel-Based
Learning Methods, Cambridge University Press, Cam-
bridge, 2000.

M. Sugiyama, M. Kawanabe, and K. Muller, “Trading
Variance Reduction with Unbiasedness: The Regular-
ized Subspace Information Criterion for Robust Model
Selection in Kernel Regression,” Neural Computation,
vol. 16, no. 5, pp. 1077-1104, 2004.

A. Tanaka, H. Imai, M. Kudo, and M. Miyakoshi, “Op-
timal Kernel in a Class of Kernels with an Invariant Met-
ric,” in Joint IAPR Internatioanl Workshops SSPR 2008
and SPR 2008. 2008, pp. 530-539, Springer.

A. Tanaka, , H. Imai, M. Kudo, and M. Miyakoshi,
“Theoretical Analyses on a Class of Nested RKHS’s,”
in 2011 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP2011), 2011,
pp- 2072-2075.

A. Tanaka, , H. Imai, M. Kudo, and M. Miyakoshi, “A
Relationship Between Generalization Error and Train-
ing Samples in Kernel Regressors,” in 20th Interna-
tional Conference on Patter Recognition (ICPR2010),
2010, pp. 1421-1424.

N. Aronszajn, “Theory of Reproducing Kernels,” Trans-
actions of the American Mathematical Society, vol. 68,

no. 3, pp. 337-404, 1950.

J. Mercer, “Functions of Positive and Negative Type
and Their Connection with The Theory of Integral Equa-
tions,” Transactions of the London Philosophical Soci-
ety, vol. A, no. 209, pp. 415-446, 1909.

R. Schatten, Norm Ideals of Completely Continuous Op-
erators, Springer-Verlag, Berlin, 1960.

H. Ogawa, “Neural Networks and Generalization Abil-
ity,” IEICE Technical Report, vol. NC95-8, pp. 57-64,
1995 (in Japanese).

C. R. Rao and S. K. Mitra, Generalized Inverse of Ma-
trices and Its Applications, John Wiley & Sons, 1971.



