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ABSTRACT

Learning based on kernel machines is widely known as a

powerful tool for various fields of information science includ-

ing signal processing such as function estimation from finite

sampling points. One of central topics of kernel machines is

model selection, especially selection of a kernel or its param-

eters. In our previous works, we investigated the generaliza-

tion error of a model space itself corresponding to a selected

kernel in kernel regressors. In this paper, we discuss the gen-

eralization error in a model space corresponding to a selected

kernel in kernel regressors; and prove that the variance of a

learning result is reduced when we adopt a kernel correspond-

ing to a larger reproducing kernel Hilbert space.

Index Terms— kernel machines, model selection, gener-

alization error, orthogonal projection, variance

1. INTRODUCTION

Learning based on kernel machines [1], represented by the

support vector machine [2] and the kernel ridge regression

[3, 4], is widely known as a powerful tool for various fields

of information science such as pattern recognition, regression

estimation, and density estimation. Moreover, these tech-

niques are also important in the fields of signal processing,

represented by sampling theorems aiming to reconstruct sig-

nals from finite sampling points. In general, an appropriate

model selection, aiming to minimize generalization error, is

required in order to obtain a desirable learning result by ker-

nel machines. Although many methods for model selection

have been proposed (see [5] for instance), theoretical analyses

of generalization error are still important since they may be

useful for construction or analysis of model selection meth-

ods. Generalization error can be decomposed into two com-

ponents. One is the error of a model space itself, that is, the

distance between an unknown true function and the model
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space, and the other is an error in the model space, that is,

the distance between a learning result and the orthogonal pro-

jection of the unknown true function onto the model space.

In our previous work [6], we investigated the former one and

proved that a kernel corresponding to the smallest reproduc-

ing kernel Hilbert space (RKHS), including an unknown true

function, gives the best model space among a class of nested

RKHS’s with an invariant metric. Moreover, we also clarified

in [7] that an invariant metric is a crucial condition for this

property. On the other hand, the behavior of the latter gener-

alization error with respect to a kernel or its parameters is not

discussed sufficiently, while that with respect to training data

set was sufficiently investigated (see [8] for instance).

In this paper, we consider a class of kernels corresponding

to a nested class of RKHS’s with an invariant metric as the

same with [6] and analyze the latter generalization error for

those RKHS’s. On the basis of our analyses, we prove that

the latter generalization error can be reduced when we adopt

a kernel corresponding to a larger RKHS.

2. OVERVIEW OF THE THEORY OF
REPRODUCING KERNEL HILBERT SPACES

In this section, we give an overview of the theory of repro-

ducing kernel Hilbert spaces [9, 10].

Definition 1 [9] Let Rn be an n-dimensional real vector
space and let H be a class of functions defined on D ⊂ Rn,
forming a Hilbert space of real-valued functions. The func-
tion K(x, x̃), (x, x̃ ∈ D) is called a reproducing kernel of
H, if

1. For every fixed x̃ ∈ D, K(·, x̃) is a function belonging
to H.

2. For every fixed x̃ ∈ D and every fixed f(·) ∈ H,

f(x̃) = 〈f(·),K(·, x̃)〉H, (1)

where 〈·, ·〉H denotes the inner product of the Hilbert
space H.
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The Hilbert space that has a reproducing kernel K is

called a reproducing kernel Hilbert space (RKHS), denoted

by HK . The reproducing property Eq.(1) enables us to treat a

value of a function at a point in D while we can not deal with

a value of a function in a general Hilbert space such as L2.

Note that reproducing kernels are positive definite [9]:

N∑
i,j=1

cicjK(xi,xj) ≥ 0, (2)

for any N , c1, . . . , cN ∈ R, and x1, . . . ,xN ∈ D. In ad-

dition, K(x, x̃) = K(x̃, x) for any x, x̃ ∈ D is followed

[9]. If a reproducing kernel K(x, x̃) exists, it is unique [9].

Conversely, every positive definite function K(x, x̃) has the

unique corresponding RKHS [9].

Next, we introduce the Schatten product [11] that is a con-

venient tool to reveal the reproducing property of kernels.

Definition 2 [11] Let H1 and H2 be Hilbert spaces. The
Schatten product of g ∈ H2 and h ∈ H1 is defined by

(g ⊗ h)f = 〈f, h〉H1g, f ∈ H1. (3)

Note that (g ⊗ h) is a linear operator from H1 onto H2.

It is easy to show that the following relations hold for h, v ∈
H1, g, u ∈ H2.

(h⊗g)∗ = (g⊗h), (h⊗g)(u⊗v) = 〈u, g〉H2(h⊗v), (4)

where the superscript ∗ denotes the adjoint operator.

3. FORMULATION OF LEARNING PROBLEMS

Let {(yk, xk) | k ∈ {1, . . . , �}} be a given training data set

with an output value yk ∈ R and the corresponding input

vector xk ∈ Rn, satisfying

yk = f(xk) + nk, (5)

where f(·) denotes an unknown true function and nk denotes

a zero-mean additive noise. In pattern recognition problems,

yk denotes a class label, and in regression estimation prob-

lems, it denotes a value of the function f(·) at the point xk

with additive noise. The aim of machine learning is to esti-

mate the unknown true function f(·) by using the given train-

ing data set and statistical properties of the noise.

In this paper, we assume that the unknown true function

f(·) belongs to the RKHS HK corresponding to a certain ker-

nel K. If f ∈ HK , then Eq.(5) is rewritten as

yi = 〈f(·),K(·, xi)〉HK + ni, (6)

on the basis of the reproducing property of kernels. Let y =
[y1, . . . , y�]′ and n = [n1, . . . , n�]′ with the superscript ′ de-

noting the transposition operator for a matrix (or a vector),

then applying the Schatten product to Eq.(6) yields

y =

(
�∑

k=1

[e(�)
k ⊗ K(·, xk)]

)
f(·) + n, (7)

where e
(�)
k denotes the k-th vector of the canonical basis of

R�. For convenience of description, we write

AK,X =

(
�∑

k=1

[e(�)
k ⊗ K(·, xk)]

)
, (8)

where X = {xk ∈ R� | k ∈ {1, . . . , �}} be input training

data set. AK,X is a linear operator that maps an element in

HK onto R� and Eq.(7) can be written by

y = AK,Xf(·) + n, (9)

which represents the relation between the unknown true func-

tion f(·) and an output vector y. The information of in-

put vectors is integrated in the operator AK,X . Therefore, a

machine learning problem can be interpreted as an inversion

problem of the linear equation Eq.(9) [12].

4. GENERALIZATION ERROR IN A MODEL SPACE

As is well known, the minimum-norm least-squares solution

of Eq.(9) is given as

f̂(·) = A+
K,Xy = A+

K,XAK,Xf(·) + A+
K,Xn (10)

where A+
K,X denotes the Moore-Penrose generalized inverse

operator of AK,X [13]. Note that PK,X = A+
K,XAK,X is

the orthogonal projector onto the model space R(A∗
K,X) (the

range space of A∗
K,X ) which is the linear subspace in HK

spanned by {K(·, xk) | k ∈ {1, . . . , �}}.

In general, the generalization error of a learning result is

defined by ||f(·) − f̂(·)||2HK
, where || · ||HK denotes the in-

duced norm of HK . According to the Pythagorean theorem,

we have

||f(·) − f̂(·)||2HK

= ||f(·) − PKf(·)||2HK
+ ||PKf(·) − f̂(·)||2HK

= ||f(·) − PKf(·)||2HK
+ ||A+

K,Xn||2HK
. (11)

The first term in Eq.(11) can be regarded as the generalization

error of the model space R(A∗
K,X), which is the squared dis-

tance between the unknown true function f(·) and the model

space R(A∗
K,X) whose behavior with respect to a kernel was

discussed in [6].

On the other hand, the second term in Eq.(11) can be re-

garded as the generalization error in a model space R(A∗
K,X),

which is the target of our analysis in this paper. Applying

Eq.(4) to the equation A+
K,X = A∗

K,X(AK,XA∗
K,X)+ yields

A+
K,X =

(
�∑

k=1

[K(·, xk) ⊗ e
(�)
k ]

)
G+

K,X , (12)
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where GK,X denotes the Gramian matrix of K with X de-

fined as GK,X = (K(xi,xj)). Therefore, we have

A+
K,Xn =

(
�∑

k=1

[K(·, xk) ⊗ e
(�)
k ]

)
G+

K,Xn

=
�∑

j=1

�∑
k=1

nj(G+
K,X)jkK(·,xk)

and

J(K, X; n)
= ||A+

K,Xn||2HK
= 〈A+

K,Xn, A+
K,Xn〉HK

=
�∑

j,k,s,t=1

nj(G+
K,X)jkns(G+

K,X)st

×〈K(·, xk), K(·, xt)〉HK

=
�∑

j,k,s,t=1

nj(G+
K,X)jkns(G+

K,X)st(GK,X)kt

= n′G+
K,XGK,XG+

K,Xn = n′G+
K,Xn,

since

〈K(·, xk), K(·, xt)〉HK = K(xk, xt)

holds and a Gramian matrix is symmetric.

5. ANALYSES OF GENERALIZATION ERROR
WITH NESTED RKHS’S

In this section, we consider a class of kernels forming a nested

class of RKHS’s with an invariant metric and analyze the gen-

eralization error in a model space defined in the previous sec-

tion with those kernels.

Let K1 and K2 be kernels corresponding to RKHS’s HK1

and HK2 satisfying

HK1 ⊂ HK2 (13)

and

||f(·)||2HK1
= ||f(·)||2HK2

(14)

for any f(·) ∈ HK1 .

The following theorems hold for kernels corresponding to

nested class of RKHS’s.

Theorem 1 [9] If K is the reproducing kernel of the class F
with the norm || · ||, and if the linear class F1 ⊂ F forms a
Hilbert space with the norm || · ||1, such that ||f ||1 ≥ ||f || for
any f ∈ F1, then the class F1 possesses a reproducing kernel
K1 such that Kc = K − K1 is also a reproducing kernel.

Theorem 2 [9] If K and K1 are the reproducing kernels of
the classes of F and F1 with the norms || · ||, || · ||1, and if
K − K1 is a reproducing kernel, then F1 ⊂ F and ||f1||1 ≥
||f1|| for every f1 ∈ F1.

From Theorem 1 and Eq.(14), it is trivial that

K2 = K1 + Kc (15)

holds with a certain kernel Kc. Therefore, we have

GK2,X = GK1,X + GKc,X . (16)

Here, we introduce the following lemma.

Lemma 1 [6] Let H1, H2 be Hermitian matrices and let y ∈
R(H1), then

y∗(H+
1 − (H1 + H2)+)y ≥ 0 (17)

holds.

The following theorem is the main result in this paper.

Theorem 3 Let K1 and K2 be kernels satisfying Eqs.(13)
and (14); and let X = {xk ∈ R� | k ∈ {1, . . . , �}} and
n ∈ R� be an arbitrary set of input training vectors and an
arbitrary noise vector, respectively. If GK1,X is non-singular,

||A+
K1,Xn||2HK2

≥ ||A+
K2,Xn||2HK2

(18)

holds.

Proof From the assumption Eq.(14) and the trivial fact that

R(A+
K1,X) = R(A∗

K1,X) ⊂ HK1 holds, we have

||A+
K1,Xn||2HK2

= ||A+
K1,Xn||2HK1

.

Therefore, for any n ∈ R� = R(GK1,X),

||A+
K1,Xn||2HK2

− ||A+
K2,Xn||2HK2

= ||A+
K1,Xn||2HK1

− ||A+
K2,Xn||2HK2

= J(K1, X; n) − J(K2, X; n)
= n′G−1

K1,Xn − n′G−1
K2,Xn

= n′(G−1
K1,X − (GK1,X + GKc,X)−1)n ≥ 0

is obtained by Lemma 1, which concludes the proof. �

From Theorem 3, it is concluded that when we adopt a

kernel corresponding to a larger RKHS, the generalization er-

ror in the model space is reduced, while the contrary con-

clusion was obtained for the generalization error of a model

space as shown in [6].

This result can be trivially extended to the variance of the

generalization error in a model space as follows.

Corollary 1 Under the conditions in Theorem 3,

En||A+
K1,Xn||2HK2

≥ En||A+
K2,Xn||2HK2

(19)

holds, where En denotes the expectation operator over the
random vector n.
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Note that it is not guaranteed that Eq.(18) holds when the

metrics of HK1 and HK2 differ. In fact, Theorem 2 implies

||A+
K1,Xn||2HK1

≥ ||A+
K1,Xn||2HK2

, (20)

which may break the proof of Theorem 3. When a nested

class of RKHS’s does not have an invariant metric, the gener-

alization error in a model space R(A∗
K1,X) evaluated in HK2

is reduced to

||A+
K1,Xn||2HK2

=
�∑

j,k,s,t=1

nj(G−1
K1,X)jkns(G−1

K1,X)st

×〈K1(·,xk),K1(·,xt)〉HK2

= n′G−1
K1,XG̃K1,XG−1

K1,Xn,

where G̃K1,X denotes the Gramian matrix of K1 with X eval-

uated in HK2 defined as

G̃K1,X = (〈K1(·, xi),K1(·,xj)〉HK2
). (21)

Therefore, we have

||A+
K1,Xn||2HK2

− ||A+
K2,Xn||2HK2

= n′G−1
K1,Xn − n′G−1

K2,Xn

= n′(G−1
K1,XG̃K1,XG−1

K1,X − G−1
K2,X)n.

Let

M = G−1
K1,XG̃K1,XG−1

K1,X − G−1
K2,X . (22)

If all eigenvalues of M are non-negative, it is concluded that

the same result with Theorem 3 is obtained for variant metric

cases. On the other hand, if there exist negative eigenvalues in

M , it implies that Theorem 3 does not hold for variant metric

cases. We conducted some numerical experiments for eigen-

structure of M with Gaussian kernels which form a nested

class of RKHS’s with variant metrics as shown in [7]. How-

ever, we could not find a case where M has negative eigen-

values. Theoretical analyses for this issue is one of our future

works.

6. CONCLUSION

In this paper, we discussed the generalization error in a model

space of kernel regressors and showed that the generalization

error in a model space is reduced when we adopt a kernel

corresponding to a larger reproducing kernel Hilbert space

among a class of kernels forming a class of nested reproduc-

ing kernel Hilbert spaces with an invariant metric, which is

a contrary conclusion for the generalization error of a model

space. Theoretical analyses for a class of RKHS’s with vari-

ant metrics and extension of our result for useful kernel ma-

chines such as support vector machines and kernel ridge re-

gressors is one of our future works to be undertaken.
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