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ABSTRACT
This paper presents a new symbol-based retrieval method on a poly-
phonic music collection which takes a sequence data of users’ per-
formances as a query. We focus on chroma and pitch features to
yield a robust retrieval with queries which are generated from dif-
ferent arrangements and which include some mistakes. Conditional
random fields (CRFs) are used to enhance simultaneous utilization
of chroma and pitch features. This is because CRFs can discriminate
the correct sequence from all the other candidate sequences without
independence assumptions for features of the inputs. Experimental
results show that the use of multiple features based on CRFs leads
to a significant improvement of retrieval accuracy and accomplishes
robust music retrieval regardless of performance style of queries.

Index Terms— music information retrieval, machine learning,
conditional random fields

1. INTRODUCTION

The purpose of this study is to develop a robust retrieval system for
music signals represented in a symbolic form. In recent years, de-
velopment of smart devices and cloud computing technology has al-
lowed enormous internet users to store and share a lot of data on the
servers. Also, MIDI interfaces for smart device, e.g., i-MX11, and
MIDI Mobilizer2, have come into the market. Accordingly, some
applications have enabled music performers to upload musical audio
and symbolic musical data of their recordings by connecting instru-
ments to the Internet via smart devices, and users can freely listen
to them. However, very little portion of such accumulated data will
contain tags, e.g., artist name, song title, or other information. There-
fore, a scheme by which users can search a specific music piece by
a content-based query such as a similar phrase will be needed.

In order to realize such a content-based retrieval, we propose a
new retrieval method for a kind of query-by-example (QBE) prob-
lems. Here, target queries consist of symbolic data such as MIDI,
performed by users, and include both melodies and the accompani-
ment or either of them. Our final goal is to find the same or similar
part to a given query as well as to identify the song title, artist name,
and so on.

So far, the field of content-based music information retrieval
(CBMIR) has developed and there have been many researches of
QBE and query-by-humming (QBH). Shifrin et al. have proposed
an HMM-based retrieval for QBH[1]. They transcribed audio data
given as a query to MIDI-like representation, and extracted pitch
and duration features. HMMs were trained from symbolic musical
data. They reported the HMM approach obtained better results com-
pared to the string matching approach. Although their framework

1http://usa.yamaha.com/products/music-production/accessories/usb-
midi/i-mx1/

2http://line6.com/midimobilizer/

treats only monophonic queries, the result indicates that the statisti-
cal modeling is effective for CBMIR.

Methods for matching polyphonic symbolic queries with a poly-
phonic symbolic collection have been proposed. Most of the re-
searches focus on pitch and duration features, e.g., [2][3][4]. How-
ever, it is not always true that queries and reference data in database
are played from the same music score and by the same instrumental
setting. In that case, the pitch and duration features for the reference
substantially differ from those for the query.

On the other hand, chroma features, namely Pitch Class Profiles
(PCPs)[5], are widely used for calculating similarity in audio match-
ing and audio-based retrieval[6][7]. They are of importance for cover
song retrieval[8][9][10][11]. This is because extracted chroma fea-
tures often become similar for the same songs even if the melody of
the query is different from that of the reference.

In this paper, we use chroma and pitch features and statistical
modeling to accomplish robust retrieval with queries performed by
users. Chroma features are expected to work well when queries and
reference data are played from different music score or when the
queries include some mistakes. Furthermore, as statistical models
we adopt conditional random fields (CRFs)[12], which are discrim-
inative models, so as to use chroma and pitch features more effec-
tively. Since CRFs can capture many correlated features of inputs,
they allow flexible feature designs for various information. There
are some researches that use CRFs on musical information process-
ing tasks, e.g., collective annotation of music and audio-to-score
matching. They reported CRFs worked better than Gaussian Mix-
ture Models (GMMs) and Hidden Markov Models (HMMs) on these
tasks[13][14].

2. STATISTICAL MODELING FRAMEWORK

In this paper, we treat the retrieval task as a labeling problem for
a sequence of features obtained from queries, and propose a new
framework based on chroma and pitch features extracted from sym-
bolic data and statistical models (i.e. CRFs). Therefore, we address
the problem of detecting a label sequence by using CRFs, given the
input feature sequence.

2.1. Features

We use a 14-dimensional feature vector which consists of the dura-
tion ratios, each for one of 12 semitones, the top note, and the bottom
note. The feature vector is calculated for each time frame of one bar
period (Figure 1).

2.1.1. Pitch class duration ratio

We introduce pitch class duration ratios (PCDRs) which are equiv-
alent to chroma features obtained from symbolic data. In the case
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Fig. 1. Extraction of 12-semitone pitch class duration ratios, the top
note, and the bottom note

of an audio signal, intensities of the semitone pitch classes can be
extracted from the signal using its power spectrum, as in PCPs[5],
. In the case of symbolic data, however, the intensities for the notes
are not reliable. Thus, we focus on the duration of each note instead.

At a time frame ti from ts
i to te

i , a sounded note ni
m is defined

as follows:

ni
m = (di

m, pi
m) {m = 1, · · · , M} (1)

where di
m is the duration time of the note (from note-on time to note-

off time), pi
m is the pitch of the note represented as the MIDI note

number, and M is the number of notes. PCDR, a 12-dimentional
vector, is then computed by octave invariant summation of durations
of all the notes, i.e.,

PCDR
i
j =

1

Ci

MX
m=1

dur(ni
m, j) {j = 0, · · · , 11} (2)

dur(ni
m, j) =

j
di

m if j = pi
m mod 12

0 otherwise.

where Ci =
PM

m=1 di
m is a normalization factor. When the target

symbolic data has a correct tempo, we calculate PCDRs for each bar.
Without tempo information, PCDRs are computed for each frame of
a constant period.

2.1.2. Top note and bottom note

In addition to PCDRs, we adopt the top and the bottom note infor-
mation as pitch features. If some of reference data have a similar
chord progression, especially in the same key, it is difficult to distin-
guish them when using only PCDRs. Thus, we use the top note TNi,
which is the highest note number, and the bottom note BNi, which
is the lowest note number, every frames. It can be expected that their
trajectories would coincide with envelopes of the melody line and
the bass line, respectively.

2.2. Conditional Random Fields

We focus here on conditional random fields (CRFs)[12], which
are discriminative models applied to sequential labeling problems.
CRFs are trained to discriminate the correct sequence from all the
other candidate sequences without assumptions of independence for
features of inputs.

2.2.1. Music labeling task

We define CRFs for music labeling as the conditional probability of
an output label sequence y = (y1, · · · , yn) given an input feature
sequence x = (x1, · · · ,xn):

P (y|x) =
1

Zx
exp(

nX
i=1

X
k

λkfk(yi−1, yi,x)) (3)

where yi denotes one of actual labels {L1, · · · , LN} and Zx is a
normalization factor over all candidate paths defined as follows:

Zx =
X

y′∈{L1,··· ,LN}
exp(

NX
i=1

X
k

λkfk(y′
i−1, y

′
i,x)) (4)

In (3), fk() is an arbitrary feature function over i-th label yi and
its previous label yi−1. λk(∈ {λ1, · · · , λK} ∈ R

K) is a learned
parameter associated with the feature function, and N is the number
of labels.

For descriptive purposes, we introduce the global feature func-
tion F(y,x) = {F1(y,x), · · · , FK(y,x)}, where Fk(y,x) =Pn

i=1 fk(yi−1, yi,x), and we redescribe learned parameters as Λ =
{λ1, · · · , λK}. Accordingly, P (y|x) is represented as:

P (y|x) =
1

Zx
exp(Λ · F(y,x)) (5)

The most likely label sequence ŷ for an input sequence is obtained
by maximizing this probability, i.e.,

ŷ = arg max
y

P (y|x) = arg max
y

Λ · F(y,x) (6)

Since Zx does not depend on label sequence, ŷ can be found with
Viterbi algorithm. The graphical structure is given as an undirected
graph.

2.2.2. Parameter estimation

We train CRFs by maximizing the log-likelihood LΛ of given train-
ing set T = {(xj ,yj)}N

j=1,

LΛ =
X

j

log P (yj |xj) =
X

j

ˆ
Λ · F(yj ,xj) − log(Zxj )

˜
(7)

When LΛ is at its maximum, the gradient of LΛ is equal to zero, i.e:

∇LΛ =
X

j

ˆ
Fk(yj ,xj) − EP (yj |xj)Fk(y,xj)

˜
= 0 (8)

where EP (yj |xj)Fk(y,xj) is the expectation of the global feature
k over the model distribution P (y|x) and T . This expectation can
be computed efficiently using a variant of the foward-backward al-
gorithm.

EP (yj |xj)Fk(y,xj) =
X

y

P (y|x)F (y,x)

=
X
y′,y

αy′ · f∗
k exp(

P
k′ λk′f∗

k′) · βy

Zx
(9)

where f∗
k denotes fk(y′, y,x), y and y′ represent neighboring labels

in the observed sequence in the training data T , and αy and βy are
the foward and backward state-cost vectors defined as follows:

αy =
X

y′∈L(y)

αy′ · exp(
X

k

λkfk(y′, y,x)) (10)

βy =
X

y′∈R(y)

βy′ · exp(
X

k

λkfk(y, y′,x)) (11)
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Fig. 2. System Overview

where L(y) and R(y) denote a set of labels each of which connects
to the label y from the left and the right, respectively. These costs
are initialized by 1 in case of the departure and the termination state.
A normalization factor is then a constant Zx = αyend . Therefore,
we can accumulate the feature expectations from calculation of these
costs.

In order to avoid overfitting, it is effective to regularize the like-
lihood. Kudo et al.[15] compared two types of regularizations, the
likelihood with a Gaussian prior (L2-norm) and a Laplacian prior
(L1-norm). They reported L2-norm method performed slightly bet-
ter than L1-norm did in a Japanese morphological analysis task.
Thus, we apply regularization with L2-norm. The log-likelihood LΛ

can be described with a Gaussian prior as follows:

LΛ =
X

j

log P (yj |xj) − 1

2

X
k

|λk|2 (12)

and the gradient is as follows:

∇LΛ =
X

j

ˆ
Fk(yj ,xj) − EP (yj |xj)Fk(y,xj)

˜ − λk (13)

The optimal parameters are given when ∇LΛ is equal to zero, and
can be obtained by various methods such as quasi-Newton and L-
BFGS methods.

3. PROPOSED MUSIC RETRIEVAL SYSTEM

An overview of our proposed retrieval system is shown in Figure 2.
The following sub-sections describe the detail of each process.

3.1. Feature extraction

We use a 14-dimentional vector described above as the feature vector
which is computed from symbolic musical data given as a standard
MIDI file. First, we conduct bar segmentation based on tempo infor-
mation. If the file does not include tempo information, we assume
120 beats per minute to detect bars. Then, PCDRs, the top note, and
the bottom note are extracted for each of the detected bars.

3.2. Definition of local feature functions

We define each local feature function as follows:

• Each probability density of PCDRi
j .

Label sequence

Input sequence

Similarities for each label

Fig. 3. Similarity matrix

• Each joint probability density of combinations for a major
triad, (PCDRi

j , PCDRi
j+4, PCDRi

j+7).

• Each joint probability density of combinations for a minor
triad, (PCDRi

j , PCDRi
j+3, PCDRi

j+7).

• Unigram of the current top note TNi.

• Unigram of the current bottom note BNi.

• Bigram of TNi−1 and TNi.

• Bigram of BNi−1 and BNi.

Here, we assume that these probability densities are approximated
with Gaussian distributions. They are obtained using all training sets
in advance.

3.3. Ranking algorithm

In order to obtain the bar-wise retrieval result, we use marginal prob-
abilities for all candidates as a kind of confidence measure. The
marginal probability Pyi=Lj for i-th label yi to be equal to Lj given
an input feature sequence x can be computed by forward-backward
algorithm using the forward and backward state-cost vectors αy, βy

described in Section 2.2 as follows:

Pyi=Lj =
1

Zx
αyi=Lj · βyi=Lj (14)

We define a similarity matrix as the matrix of which element at the
i-th row and j-th column is expressed as Pyi=Lj (Figure 3). This
enables us to accomplish music retrieval for not only whole of a
query but also a specific part because the ranked list for an arbitrary
part can be obtained by element-wise comparison of corresponding
columns in a similarity matrix.

4. EXPERIMENTAL RESULTS

We tested our system on polyphonic piano solo performances of
classical and popular music. Two query sets were manually con-
structed by human subjects. The first set had 75 queries, played from
the music scores used for the reference database (Set1). The second
set had 75 queries which were in different styles from the references:
some had no melody, some had no accompaniment, and some were
arranged suitably (Set2). Some queries in both sets had mistakes.
The average length of all queries is approximately 40 seconds, and
almost all of them consist of only 16-bar or 32-bar performance. As
a reference collection, we used 1422 commercially available MIDI
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Table 1. Results of models and features comparison

Method Set1 Set2 All

Models Features AR MRR AR MRR AR SD MRR

GMMs PCDR 11.2 0.60 21.3 0.39 16.3 36.4 0.49

GMMs PCDR,TN,BN 18.7 0.44 22.4 0.42 20.5 40.1 0.43

HMMs PCDR 12.6 0.56 22.6 0.37 17.6 36.0 0.46

HMMs PCDR,TN,BN 8.6 0.56 16.6 0.46 12.6 24.3 0.51

CRFs PCDR 7.2 0.48 9.1 0.38 8.1 9.4 0.43

CRFs PCDR,TN,BN 4.9 0.61 7.5 0.46 6.2 9.2 0.53

files3 which are polyphonic piano solo pieces of classical and pop-
ular music. Note that the query in test sets has the same key as the
corresponding piece in the reference collection.

To evaluate the effectiveness and the robustness of the proposed
method, we measure the average rank (AR), the standard deviation
(SD) of ranking for all queries, and the average Mean Reciprocal
Rank (MRR: 1/rank of the first correct item) of methods based on
the following viewpoints of models and features.

1. Model-comparison: GMMs vs. HMMs vs. CRFs.

2. Feature-comparison: only PCDR vs. all features (PCDR, the
top note, and the bottom note).

The results are listed in Table 1. The CRFs-based method with
both chroma and pitch features (proposed) improved both the av-
erage rank and the average MRR in comparison to other methods.
Also, a comparison of SD values indicates that the proposed method
made it possible to reduce the variability of ranking. These results
prove the effectiveness of using both chroma and pitch features based
on CRF models. In case of using CRFs and HMMs, introduction of
the top note and the bottom note improved the performance without
exception. On the other hand, such feature combination in GMMs
leads to a degradation of the accuracy in many cases. This is at-
tributed to the fact that GMMs do not have tranitional information
and are influenced by local difference between features.

Whereas the proposed method significantly improved the aver-
age rank compared to the HMMs-based method, the average MRR
by HMMs-based method became nearly equal to that by the pro-
posed method, especially toward Set2. This shows the results of
HMMs-based vary considerably depending on the query. Thus, the
result means that the proposed method achieves more robust retrieval
than the other methods.

5. CONCLUSIONS

We presented a new method for symbolic music retrieval using
chroma and pitch features based on CRFs. CRF models enhance
simultaneous utilization of chroma and pitch features because they
enable flexible feature designs for multiple information. Experi-
mental results show that the use of both chroma and pitch features
based on CRFs is more effective in symbolic music retrieval than
that based on other models.

As a future work, we plan to apply our framework to audio data.
Proposed PCDRs are expected to have high affinity for PCPs[5],
since both are based on intensities of the semitones. Extracting pitch
features corresponding to the top and the bottom note needs accurate
pitch estimation from polyphonic audio. Thus, we would extend the
framework in which errors in pitch estimation do not significantly
affect music retrieval. We also plan to combine hashing techniques,

3http://www.music-eclub.com/musicdata/

e.g., locality sensitive hashing[11], to quickly find similar items in
large databases.
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