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ABSTRACT

With the high processing power of today’s smartphones, it be-
comes possible to turn a smartphone into a personal audio surveil-
lance and monitoring system. Ideally, such a system should be able
to detect and classify a variety of sound events 24 hours a day and
trigger an emergence phone call or message once a specified sound
event (e.g., screaming) occurs. To prolong battery life, it is im-
portant to trade off the detection accuracy against power consump-
tion. This paper investigates the power consumption of different
stages of a sound-event classification system, including segmenta-
tion, feature extraction, and SVM scoring. The performance and
power consumption of various acoustic features and SVM kernels
are compared. This paper advocates the notion of intrinsic complex-
ity through which the scoring function of polynomial SVMs can be
written in a matrix-vector-multiplication form so that the resulting
complexity becomes independent of the number of support vectors.
Results show that this intrinsic complexity can reduce the CPU uti-
lization of polynomial SVMs by 28 times without reducing classifi-
cation accuracy.

Index Terms— Low-power SVM; kernel-energy tradeoff; sound
event classification; smartphones; audio surveillance.

1. INTRODUCTION

Surveillance and monitoring for security purposes have become in-
creasingly important in today’s society. Traditionally, surveillance is
achieved by recording the scenes via video cameras. However, tak-
ing video is inappropriate (e.g., in a washroom) or even impossible
(e.g., insufficient lighting) under some situations. Audio is a viable
alternative under such situations. In fact, audio is more effective
than video in detecting the events that posses unique acoustic signa-
tures [1–3], e.g., screaming, crying, gunshots, door slam, etc. More-
over, video-based surveillance typically requires using fixed cameras
to record the scenes, restricting the surveillance system to be local-
ized in one place. However, audio-based surveillance can make ef-
fective use of mobile devices, allowing the surveillance system to be
moved from one place to another easily.

Sound event detection (SED) [4,5] is a branch of computational
auditory scene analysis [6] where computational methods are used to
separate and recognize mixtures of sounds in natural environments
similar to what human listeners can do. Recently, sound event de-
tection has attracted more attention from the research community,
primarily because of the increasing importance in security. SED has
also attracted attention in the speech recognition community where
the goal is to recognize not only speech but also other sound events
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such as paper flipping, breathing, and coughing during a meeting [7].
The models and features (e.g. HMM and MFCC) being used, how-
ever, are mainly borrowed from speech recognition, as the main goal
is still to recognize the speech in a meeting.

The recent ubiquity of smartphones has opened up new applica-
tions of sound event detection. For example, any smartphones can be
turned into a personal security device, allowing users to detect any
hazardous situations around them 24 hours a day. Abnormal sound
events such as screaming can be detected and emergency phone calls
can be automatically made. This kind of personal security device is
particularly useful for children and women who are more vulnerable
to assaults. The ability to detect scream sounds and body fall is also
useful for the elderly.

However, audio monitoring using mobile devices has a catch.
Because monitoring should be carried out continuously, the moni-
toring process will easily drain the battery of the smartphone if the
detection algorithm is not carefully designed to reduce power con-
sumption. To minimize power consumption, spectral analysis should
be avoided when there is no sound events (i.e., only background sig-
nals present). Therefore, a low-power sound activity detector that
does not require spectral analysis is desirable. To this end, the aver-
age energy and zero-crossing rate are ideal choices. When a potential
sound segment is found, it is necessary to classify the type of sound
events for further action. For example, if it is a scream, a phone call
will be automatically made. To classify sound events, energy level
and zero-crossing rate will not be sufficient, and spectral analysis is
required. As will be demonstrated in this paper, spectral analysis
consumes significantly more battery power than time-domain analy-
sis. It is therefore necessary to investigate the power consumption of
various spectral-based techniques.

Another source of power consumption is the classification pro-
cess. The popular Gaussian mixture model or hidden Markov model
are not appropriate because of the complexity in the likelihood func-
tion. Linear SVMs are ideal but their capability is limited. Non-
linear SVMs strike a good compromise between power consumption
and classification ability. Here, we propose a low-power polynomial
SVM that takes advantage of the fact that part of the SVM scoring
process can be pre-computed during off-line training. We derive this
new formulation and refer to its complexity as intrinsic complexity of
SVMs. We also make use of the symmetric property of the multino-
mial coefficients in the polynomial expansion to reduce the intrinsic
complexity further.

The paper is organized as follows. Section 2 explains how the
intrinsic complexity of polynomial SVMs can help reduce computa-
tion during the scoring stage. Then, Sections 3 and 4 demonstrate
the merit of intrinsic complexity via performance analysis and CPU
utilization analysis of a sound-event classification task.
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2. LOW-POWER SUPPORT VECTOR MACHINES

2.1. Intrinsic Complexity of Polynomial SVM

Assume that we are given N training vectors {x1, . . . ,xN} of di-
mension M with labels yn ∈ {+1,−1}, n = 1, . . . , N . Using the
pairs {xn, yn}Nn=1, a support vector machine (SVM) can be trained.
Given a test vector x, the SVM’s output is written as

f(x) =

N∑
n=1

αnynK(x,xn) + b

=

N∑
n=1

anK(x,xn) + b,

(1)

where an ≡ αnyn, b is a bias term, αn’s are Lagrange multipliers,
and K(x,xn) is a kernel function.

When K(x,xn) is a 2nd-order polynomial kernel, we may ex-
press Eq. 1 in a matrix-vector-multiplication form [8]:

f(x) =

N∑
n=1

an

(
1 +

x · xn

σ2

)2
+ b (2a)

=

N∑
n=1

an

(
x̃Tx̃n

)2
+ b (2b)

= x̃T

(
N∑

n=1

anx̃nx̃
T
n

)
x̃+ b (2c)

= x̃TW̃x̃+ b, (2d)

where x̃ and W̃ are (M + 1)-dimensional vector and (M + 1) ×
(M + 1) symmetric matrix defined respectively as

x̃ ≡
[

xσ−1

1

]
and W̃ ≡

N∑
n=1

anx̃nx̃
T
n,

where σ is a scaling constant. Note that because W̃ depends only
on an’s and training data xn, it can be pre-computed during training.
The decision boundary is determined by this (M + 1) × (M + 1)
matrix, whose size is independent of the training size N .

To study the complexity of Eq. 2, let us further rewrite it as

f(x) =
N∑

n=1

an

(
x̃Tx̃n

)2
+ b (3a)

=

N∑
n=1

an

(
M+1∑
i=1

x̃(i)x̃(i)
n

)(
M+1∑
j=1

x̃(j)x̃(j)
n

)
+ b(3b)

=

M+1∑
i=1

M+1∑
j=1

w̃ij x̃
(i)x̃(j) + b (3c)

=

M+1∑
i=1

x̃(i)

(
M+1∑
j=1

w̃ij x̃
(j)

)
+ b, (3d)

where w̃ij ≡ ∑N
n=1 anx̃

(i)
n x̃

(j)
n and x̃(i) is the i-th element of x̃.

The summation within the inner parentheses in Eq. 3d amounts to
(M + 1)2 operations which account for the majority of the opera-
tions. Note that the number of operations for the subsequent sum-
mation is (M + 1) and thus can conveniently be neglected in our

estimate. Furthermore, by exploiting the symmetry of W̃, Eq. 3d

can be further reduced to

f(x) =

M+1∑
i=1

x̃(i)

(
i∑

j=1

mijw̃ij x̃
(j)

)
+ b (4)

where mij are the binomial coefficients. More precisely, mij =
2!

γ1!···γM+1!
, where γl (l = 1, . . . ,M + 1) is the number of occur-

rences of l in {i, j} and
∑M+1

l=1 γl = 2. This means that the number
of operations can be further reduced to

J2 =
(M + 1)(M + 2)

2!
=

(
M + 2

2

)
≈ (M + 1)2

2
. (5)

More importantly, the computational complexity has now become
independent of N (or the number of support vectors S in the case of
SVM) during the on-line classification/detection phase.

Let’s extend the above concept to p-th order polynomial SVMs:

f(x) =
N∑

n=1

an

(
x̃Tx̃n

)p
+ b

=

N∑
n=1

an

(
M+1∑
i1=1

x̃(i1)x̃(i1)
n

)
· · ·
⎛
⎝M+1∑

ip=1

x̃(ip)x̃
(ip)
n

⎞
⎠+ b

=

M+1∑
i1=1

M+1∑
i2=1

· · ·
M+1∑
ip=1

w̃i1···ip x̃
(i1)x̃(i2) · · · x̃(ip) + b

=

M+1∑
i1=1

x̃(i1)

⎡
⎣M+1∑

i2=1

x̃(i2)

⎛
⎝· · ·

M+1∑
ip=1

w̃i1···ip x̃
(ip)

⎞
⎠
⎤
⎦+ b

=

M+1∑
i1=1

x̃(i1)

⎡
⎣ i1∑

i2=1

x̃(i2)

⎛
⎝· · ·

ip−1∑
ip=1

mi1···ip w̃i1...ip x̃
(ip)

⎞
⎠
⎤
⎦+ b

where w̃i1···ip ≡∑N
n=1 anx̃

(i1)
n · · · x̃(ip)

n and mi1···ip = p!
γ1!···γM+1!

are multinomial coefficients. Generalizing from the 2nd-order case,
γl, l = 1, . . . ,M+1, is the number of occurrences of l in {i1, . . . , ip}
and

∑M+1
l=1 γl = p. Therefore, for polynomial kernel of degree p,

the number of operations is

Jp =

(
M + p

p

)
≈ (M + 1)p

p!
. (6)

In summary, we have introduced two different costs for the com-
putation of the decision function: (1) according to its intrinsic com-
plexity O ((M + 1)p/p!), which is independent of the number of
training samples N ; and (2) by means of direct kernel evaluation
through Eq. 2a, which has a complexity of O(MN). A cost consci-
entious choice will adopt the less of the two options, leading to

Computational-Complexity = min

{
ηMN,

(
M + p

p

)}
,

where 0 ≤ η ≤ 1 indicates the fraction of nonzero coefficients in
{an, n = 1, . . . , N}. In case of SVMs, η = S

N
< 1, as only the

support vectors have nonzero αn. Thus, the minimum computational
complexity becomes

Computational-Complexity = min

{
MS,

(
M + p

p

)}
. (7)

Compared with Other Methods. To reduce the run-time com-
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plexity of SVMs, Burges proposed the reduced-set method [9] that
approximates Eq. 1 by replacing the full set of support vectors with
a reduced set of non-support vectors. Our method is different in that
instead of approximating Eq. 1, our approach produces the same de-
cision function as the one that uses the full set of support vectors but
with significant reduction in run-time complexity.

2.2. Complexity of RBF-SVM

Unlike polynomial kernels, RBF kernels cannot be expressed in a
compact form similar to Eq. 2(d). In fact, for RBF kernels, the num-
ber of operations to compute the inner products in the kernel-induced
feature space is infinite, i.e., J → ∞. Of course, we can use the ker-
nel trick to compute the inner product without accessing the infinite
dimensional space. But this still amounts to O(MS) operations,
where M is the dimension of x and S is the number of support vec-
tors. This means that the complexity of RBF-SVM grows linearly
with the number of support vectors. This could become a compu-
tational hurdle when S � M . In comparison, the complexity of
low-order polynomial kernel (e.g., Eq. 5) is determined by its in-
trinsic complexity which does not scale with S. This could result
in an enormous computation (energy) saving and thus become an
influencing factor in the choice of kernels in tradeoff consideration.

3. EXPERIMENTS
Data Collection. We collected 103 sound events and an audio record-
ing of a train station. The sound events are divided into six categories
shown in Table 1. All events were sampled at 8kHz, 16 bits per sam-
ple. The sound events were added to the train-station recording at an
SNR of −5dB, 0dB, 5dB, and 10dB.

Sound Event Segmentation. The sound-event classification is
divided into three stages: segmentation, feature extraction, and SVM
scoring. In real-time sound event classification, segmentation will
be performed continuously, whereas feature extraction and scoring
will be performed once a sound segment is found. To implement
such a system on mobile devices, it is imperative to use the least
power-consuming segmentation method. To this end, we used aver-
age energy for detecting potential sound events. Specifically, at any
frame, the average energy of the current and the previous 3 frames
was calculated and compared with a decision threshold, which was
estimated from non-sound event periods. The segmentation algo-
rithm tracks the moving average continuously to detect any potential
sound segments. The acoustic features of the event segments are
then extracted. Fig. 1 shows an example of event segmentation (3rd
panel) and feature vectors (4th and 5th panel) of the detected sound
segments.

Acoustic Feature Extraction. We have investigated four acous-
tic features, including MPEG-7 audio spectral flatness (ASF) [10],
mel-frequency cepstral coefficients (MFCC) [11], linear-prediction
cepstral coefficients (LPCC), and Mel filter-bank spectrum (Mel-
spec). The frame size and frame rate were set to 32ms and 31.25Hz,
respectively. For ASF, MFCC and Mel-spectrum, a 256-point FFT
was applied to each frame. The dimension of ASF vectors is 15. For
all other features, the dimension is 12, i.e., M = 12. To avoid ex-
tra computation burden on the SVM scoring phase, we did not use
delta features. All acoustic vectors were subjected to z-norm before
applying to the SVM classifiers.

Classifier Setting. For the RBF-SVM, we set the RBF width
to 1 and penalty factor C to 1 (C = 1 ∼ 5 give almost the same
results). For Poly-SVM, we set degree p = 2, σ =

√
2 in Eq. 2a,

and penalty factor C = 0.01.
Performance Evaluation and Metrics. An important perfor-

mance measure for mobile applications is power consumption. As

Sound Event No. of Samples Length (sec.)
Scream 52 0.5 – 5.8

Door-slam 8 0.1 – 0.4

Gunshot 8 0.4 – 2.0

Baby cry 16 1.2 – 2.5

Speech 16 0.3 – 1.7

Phone-ring 9 1.2 – 9.0

Total 103 1942

Table 1. Summary of sound events used in the experiments.

it is difficult to measure the power on a mobile devices, we used
the percentage of CPU utilization reported from the task manager
of a smartphone (Acer neoTouch S200 equipped with an ARMv7-A
processor) as the metric for power consumption.

We used leave-one-out cross validation to compare the perfor-
mance of polynomial and RBF SVMs under different signal-to-noise
ratios. Specification, for each fold, one sound sample (file) is left out
as test data, and the remaining 102 samples were used for training.
Two scenarios were considered: (1) scream detection and (2) sound
event classification. For the former, the scream event was considered
as the target-class whereas the other five sound events were consid-
ered as the nontarget-class. For the latter, for each fold, a one-vs-rest
SVM classifier was trained to classify the test sound file into one of
the six sound classes.

4. RESULTS AND DISCUSSIONS

CPU Utilization. Table 2 shows the CPU utilization of various pro-
cesses in the sound-event classification task. Evidently, frequency-
domain features such as LPCC and MFCC consume significantly
more CPU time (power) than time-domain features such as energy
and zero-crossing rate. However, time-domain feature extraction
needs to be performed continuously whereas LPCC and MFCC only
need to be extracted after a potential sound segment is detected.

Among the classifiers investigated, RBF-SVM is the most power
demanding, primarily because of its high complexity (O(MS)). The
CPU utilization of fast Poly-SVM scoring is only 1/28 of that of
conventional SVM scoring. This low CPU utilization clearly demon-
strates the significant computation saving achievable by pre-computing
the weights of polynomial SVMs in Eq. 3d.

Table 2 shows that under the worse case scenario where sound
events occur at all time, the CPU utilization is about 18% (16% for
LPCC, 1% for energy estimation, and 1% for fast Poly-SVM scor-
ing). However, this situation is rare and we may comfortably assume
that sound events occur at 10% of the time under normal situation.
Under this normal situation, the CPU utilization becomes 4% if con-
ventional Poly-SVM is used. This is further reduced to 2% when fast
Poly-SVM is used, which represents a two-fold in power reduction.

Table 2 also shows the CPU utilization of Windows Media Player.
Evidently, under normal operating condition, our proposed system
consumes the same amount of power as the media player. If sound
events occur less often than 10% of the time, the detection system
will consume even less energy than the media player.

Poly-SVM vs. RBF-SVM. Fig. 2 shows the accuracy of sound
event classification and the equal error rate (EER) of scream detec-
tion using various acoustic features as input vectors to polynomial
and RBF SVMs. Note that both ordinary and fast Poly-SVM give
the same accuracy and EER. Evidently, in both detection and classi-
fication tasks, polynomial SVMs generally outperform RBF-SVMs.
However, none of the features stands out across different SNR and

1987



Process CPU
Utilization

12-dim LPCC 16%

12-dim MFCC 37%

12-dim Mel filter-bank spectrum 25%

15-dim MPEG-7 ASF 25%

Energy < 1%

Zero-crossing rate < 1%

RBF-SVM scoring (O(MS), S = 1886) 35%

Poly-SVM scoring (O(MS), S = 2096, Eq. 3a) 28%

Fast Poly-SVM scoring (O((M + 1)2/2), Eq. 4) < 1%

Scream Detection System with Poly-SVM 4%

Scream Detection System with fast Poly-SVM 2%

Windows Media Player (Audio only) 2%

Table 2. CPU (ARMv7-A in Acer neoTouch S200) utilization of

various processes in the sound-event detection task. Except for ASF,

M = 12 for all cases. S is the average number of support vectors

in the SVMs using LPCC vectors extracted from sound events with

0dB SNR. The scream detection system assumes that LPCC are used

as features and that sound events occur 10% of the time.

Fig. 1. Waveform, spectrogram, energy profile, MFCC, and LPCC

of 4 sound events in train-station background at an SNR of 0dB.

types of SVMs. Therefore, if power consumption is a concern, we
may select LPCC as it requires the least resources to compute and
select fast Poly-SVMs due to its low intrinsic complexity (see Ta-
ble 2).
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