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ABSTRACT

We propose a framework for transfer learning in the unsupervised
condition, and show its usefulness in addressing the problem of mis-
match in test time dialog state decision classifier, which is presented
here as a binary hypothesis problem. We are asked to either accept or
reject the ASR output. The framework encompasses a two step pro-
cess, the first step culminates in the discriminative retraining of the
test time classifier using the results of an EM solution to the joint op-
timization between the original labelled training data and observed
unlabelled test data for enhanced test time discrimination of the bi-
nary classes. The second step is optimization of the performance of
this classifier in a specific operating range. This extends previous
results in Bayes error reshaping to the unsupervised condition which
favor a particular false alarm operating range. We show a total rela-
tive reduction in error rate of up to 15%, 12.5% from the first step,
with an additional 2.5% from step 2 along with the added knowledge
of the threshold needed to operate at a specific false alarm operating
range.

Index Terms— Unsupervised Transfer Learning, Covariate
Shift, Bayes Error Reshaping, MCE, ASR Confidence.

1. INTRODUCTION

When applying the results of supervised machine learning to the
classification or regression problems the assumption that training
and test points are drawn from the same distribution is often vio-
lated in practice. In [1] it was shown that under certain restrictive
assumptions about how the training and test distribution varied this
shift could be compensated in the training domain objective func-
tion. This result known as covariate shift correction and the closely
related sample selection bias correction [2], resulted in numerous
variations and applications in the machine learning literature [5],
[11], [3], [4]. In this paper we extend previous work in two direc-
tions, a relaxation of the constraints implied by the covariate shift
assumption to the classification problem, and Bayes error reshaping
for detection error tradeoff [6], [7] under the unsupervised condi-
tion. The subsequent framework is then applied to the problem of
ASR dialog decision.

In transactional ASR dialog systems, the decision to accept or
reject (or reconfirm) a user utterance is often carried out by a deci-
sion function that takes as input a set of features extracted during
the recognition process. The decision function may be implemented
by a classifier discriminatively trained with data collected from a
mixture of dialog states, with each state generally having multiple
grammars or language models (LMs) operating in parallel. The fea-
tures extracted during the recognition process have a dependence

on the grammars (or LMs), and the state of acoustic model adap-
tation making it difficult to sufficiently cover all conditions with a
labelled training corpus. This often places the decision classifier in
a mismatched condition. The mismatch is not only evident through
the usual loss in class discriminative power but in the expected miss
(M), false accept (FA) ROC curve operating point.

The paper is organized as follows. In section 2 the underlying
modeling framework is introduced, section 3 discusses an EM solu-
tion. Section 3.3 discusses the unsupervised detection error tradeoff.
Experimental setup, results and conclusions are presented in sections
4, 5 and 6.

2. MODELING FRAMEWORK

Let x be the feature vector and y the class label, in this discussion a
binary label. From n i.i.d. training samples ((xi, yi) : i = 1, ..., N)
we may learn the the model parameters θ used to model the proba-
bility p(y|x, θ). In practice the assumption that the same underlying
distribution generates both the training and test instances is often vi-
olated. This leads to sub-optimal class discrimination at test time,
which can be reflected in a drop of equal error rate performance and
unknown classifier operating range, defined here as the probability
of false accept (PF A), probability of miss (PM ) point on the detec-
tion error curve. For the binary hypothesis test this operating point
is determined by the log likelihood ratio test and threshold t:

log
p(H2|x)

p(H1|x)

H2

> t, (1)

Where the binary labels y are represented by H1 and H2. The thresh-
old t defines the decision regions Z1 and Z2 from which we may
determine the false accept and miss probabilities:

PF A=

Z
Z2

p(x|H1)dx, PM=

Z
Z1

p(x|H2)dx. (2)

To learn the parameters of the classifier θ we minimize the ex-
pected loss on the training data for some loss function l(f(x), y).
To address the test time condition where the underlying distribution
generating the features is not the same as that generating the training
time features we have the covariate shift result [1]:

ET [l(f(x)), y)] = ED

»
p(x|θT )

p(x|θD)
l(f(x), y)

–
, (3)

where T denotes the test set and D the training set. This result fol-
lows from application of Bayes rule, p(x, y|θD) = p(x|θD)p(y|x, θD)
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and the assumption that p(y|x, θT ) = p(y|x, θD) = p(y|x), we
have for wx = p(x|θT )/p(x|θD) and l(f(x), y) = Lx,y :

ED [wxLx,y ] =
X
x,y

p(x|θT )

p(x|θD)
p(x|θD)p(y|x, θD)Lx,y = ET [Lx,y ]

(4)
With this assumption minimization of the weighted loss function on
the training data will result in minimization of the loss function on
the test data. In practice the assumption that p(y|x) remains con-
stant from training to testing environments is too strict. It is also
noted that directly modeling p(y|x) would seem to circumvent this
problem entirely, (as opposed to the generative approach which at-
tempts to model p(y|x) with p(x|y) and Bayes rule). Directly mod-
eling p(y|x) may not fully avoid the shift in the underlying feature
distribution when there is a misspecification of the underlying model
[2].

To avoid the strict assumption needed to satisfy the covariate
shift solution, we assume the distribution p(x, y) depends on some
unobserved variable S, to get at the distribution of the observable
variables we marginalize over S, p(x, y) =

R
p(x, y|S)P (S)dS

[5]. We assume here that S captures the differences between
the training and testing environments, if pD(S) = pT (S), then
pD(x, y) = pT (x, y). Specifically here we may assume S captures
the mix of language models and state of the acoustic model at a spe-
cific dialog state. To put this into practice we make the assumption
that the training feature space is generated by two sources, one of
those sources is responsible for both the generation of the training
and test time feature spaces, the other source is responsible for fea-
tures that are unique to the training feature space. Associated with
each of these sources is a classifier, p(y|x, Si), i = 1, 2. From these
definitions the training distribution can be written:

pD(x, y) =
X

S

p(x, y, S) =
X

S

p(y|x, S)p(x|S)p(S) (5)

We assume the underlying feature distribution is generated by a
Gaussian mixture model. Based on the definition of the two sources
we have the model for the training distribution:

pD(x) = p(s1)

M1X
k=1

αD
1kp1k(x) + p(s2)

M2X
k=1

αD
2kp2k(x). (6)

Where this distribution is generated from p(s1) and p(s2) propor-
tions of source sets 1 and 2 respectively, and test distribution:

pT (x) =

M1X
k=1

αT
1kp1k(x). (7)

From equation 7 we note that the test distribution shares the param-
eterization of the Gaussian components associated with training dis-
tribution source set 1, but differs in the mixture weights pT

1 (k). In
practice this definition can be achieved by building separate GMMs
on the training and test data and merging them to form the source set
1 GMM, the mixture weights are then re-estimated to form the cor-
responding PD and PT distributions. The source set 2 GMM would
be derived from the training data, and would be composed of Gaus-
sian components with maximum KL distance to the test data GMM.
More details about this step will be presented in section 4.2. Equa-
tions 5, 6, and 7 define the modeling framework, we now present an
EM solution for the parameter learning.

3. EM SOLUTION

With the description of the previous section we may write the full
generative model of the observed data. For training data points u ∈
D, and test data points ν ∈ T , given by the joint distribution:
P ((xu, yu|u ∈ D), (xν |ν ∈ T )|Θ,w), where Θ represents the pa-
rameters associated with the underlying feature generation GMMs,
the component mixture weights and source proportions and w are
the parameters of the function modeling p(yu|xu). We have the log
likelihood of the observed training and test data:

log P ((xu, yu|u ∈ D), (xν |ν ∈ T ) |Θ,w) =P
u∈D log

“P
j p(sj)

PMj

k=1 αD
jkpjk(xu|θjk)pj(y

u|xu,wj)
”

+P
ν∈T log

PM1

k=1 αT
1kp1k(xν |θ1k), (8)

where the unknown parameters (Θ,w) can be estimated with the use
of the EM algorithm. The unobserved variables are the source and
corresponding mixture responsible for the generation of the training
features and the mixture responsible for test feature generation. The
E-step for iteration t, results in computation of the posterior proba-
blility for a given training sample x

u, P (s, k|xu, yu, Θt,wt). We
have:

γu
sk =

p(xu, yu|s, k, Θt,wt)p(k|s)p(s)P
ŝ,k̂ p(xu, yu|ŝ, k̂, Θt,wt)p(̂k|ŝ)p(ŝ)

=
p(xu|s, k, Θt)p(yu|xu,wt

s)α
D
skpsP

ŝ,k̂ p(xu|ŝ, k̂, Θt)p(yu|xu,wt
ŝ)α

D

ŝk̂
pŝ

(9)

The posteriors for the hidden variables associated with the test vec-
tors x

ν follow a similar equation. Note the absence of labels and
source set 1 responsibility for the generation of the test vectors:

γν
1k = P (s1, k|x

ν , Θt) =
p(xν|s1, k, Θt)αT

1kP
k̂ p(xν|s1, k̂, Θt)αT

1k̂

, (10)

The maximization step results in updates:
• Source set weights and source GMM weights:

ps=
1

ND

NDX
i=1

MsX
k=1

γui
sk , αD

sk=
1

psND

NDX
i=1

γui
sk , αT

1k=
1

NT

NTX
i=1

γνi
1k.

(11)
• Source model Gaussian parameters mean, and covariance (μ, Σ),

with TA =
PND

i=1 γui
1k +

PNT

i=1 γνi
1k , and ξu

j,k = (xu − μj,k):

μ1,k =
PND

i=1
γ

ui
1k

x
ui +

PNT

i=1
γ

νi
1k

x
νi

TA

Σ1,k =
PND

i=1
γ

ui
1k

ξ
ui
1,k

(ξ
ui
1,k

)T +
PNT

i=1
γ

νi
1k

ξ
νi
1,k

(ξ
νi
1,k

)T

TA

μ2,k =
PND

i=1
γ

ui
2k

x
ui

P
ND

i=1
γ

ui
2k

, Σ2,k =
PND

i=1
γ

ui
2k

ξ
ui
2,k

(ξ
ui
2,k

)T

P
ND

i=1
γ

ui
2k

(12)

• Source classifier updates: This is dependent on the form of the
underlying classifier, the fundamental result is an optimization of a
weighted loss function which is analogous to equation 4 and can be
seen as a relaxation of the assumption p(y|x, θT ) = p(y|x, θD) =
p(y|x) through the posteriors γu

sk. We have the source set 1 and 2
classifier optimization

∂

∂ws

NDX
i=1

"
MsX
k=1

γu
sk

#
log(p(yu

i |x
u
i ,ws)). (13)
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3.1. Classifier Modeling: Weighted MCE

The model used for source classifiers p(y|x) will be based on a
GMM. The smoothed 0/1 loss function for a binary classifier when
the correct class label is Hc, competing class (incorrect) Hic, is
given by

Lc(x) =
1

1 + exp(η(log p(x|Hc)
p(x|Hic)

))
(14)

For equal class priors p(y), we have p(y|x) = p(x|y)/
P

y′ p(x|y′),
and for the binary class case max log p(Hi|x) = max log p(x|Hi)−
min log p(x|Hj), therefore minimizing the loss of equation 14 is a
proxy for maximizing the likelihood of the source classifiers given
by equation 13. Optimization of the weighted empirical loss func-
tion results in the source S1 and S2 classifier parameter updates. For
training data ((xi, yi) : i = 1, ..., N), binary classes yi ∈ (H1, H2)
and weights (eq. 9) we have:

LS =
X

i

X
j

"
MsX
k=1

γui
sk

#
Lj(xi)I(xi ∈ Hj), (15)

where I() is the indicator function. Weighted gradients of the loss
function for the correct and incorrect class for sample x follow di-
rectly:

∂Lc(x)

∂wc

= −

"
MsX
k=1

γu
sk

#
ηLc(1 − Lc)

∂ log p(x|Hc)

∂wc

∂Lc(x)

∂wic

=

"
MsX
k=1

γu
sk

#
ηLc(1 − Lc)

∂ log p(x|Hic)

∂wic

(16)

Where it is understood that the classifier parameters of Gaussian
means, variances and mixture priors are represented by the param-
eter vector wc and wic for the correct and incorrect class, implic-
itly tied to the class labels Hc, Hic. In practice a fraction of the
maximum likelihood statistics are added to equation 15 to prevent
overfitting.

3.2. Test Time Usage

The ultimate goal of sections 3 and 3.1 is to estimate the classifier to
be used on the test set: p(y|x,ws1), as this model is associated with
source set 1 and is intended to capture the underlying distribution
shared between training and test environments.

3.3. Unsupervised PF A, PM Trade-off

For the binary classifier plotting the false alarm vs. probability of
miss (2) on a standard deviate scale, yields the detection error trade-
off (DET) curve. In [6] the idea of feature space DET analysis
criterion (fDETAC) was proposed. This result shows that we may
estimate a feature space transform to rotate the DET curve to en-
hance the PM performance in one PF A region at the expense of
another. This follows from assuming Gaussian score distributions
for PF A, PM which results in a linear relationship. Denoting class
i score mean and standard deviation by μi and σi we have the rela-
tionship for normal inverse error function Φ−1:

Φ−1(PM ) = −
σ1

σ2
Φ−1(PF A) +

μ1 − μ2

σ2
. (17)

By estimating a feature space transform A we may rotate and shift
this DET curve. This optimization results in fDETAC, given by:

A∗ = argmin
A

»
σ1(A)

σ2(A)

–
wR +

»
μ1(A) − μ2(A)

σ2(A)

–
wD, (18)
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Fig. 1. DET curve for binary classifier

Where wr and wd can be used to regulate the slope and delta op-
timizations. Figure 1 illustrates a DET curve for a classifier before
and after fDETAC optimization. Note that we have pivoted approxi-
mately around 10% PF A, reducing the PM from the mid 70% range
to the upper 60% range at the expense of an elevated PM in the
PF A > 60% range.

We extend this result to perform unsupervised optimization of
equation 18, where we rely on the original training labels but a
reweighting of the scores with the posteriors from equation 9. The
weighted mean score for class label i is given by

μi =
1

N

X
xd∈i

2
4Ms1X

k=1

γxd
s1k

3
5 log

P
k p(k|H2)p(xd|k, H2)P
k p(k|H1)p(xd|k, H1)

(19)

Where the posteriors are specific to the underlying source set 1 mod-
els (section 3.2).

The gradient of score mean and standard deviation results in
terms of the form for hypothesis j:X

k

p(k|xd, Hj)Σ
−1
k (Axd − μk)xT

d (20)

where we note that the Jacobian of the transform cancels. Solution
for the transform A can be arrived at through a line search.

4. EXPERIMENTAL SETUP

The ASR system is our standard telephony enterprise installation,
this is MFCC based with 250k Gaussians, 20k context dependent
states. The training setup includes 48k sentences covering 11 dia-
log states composed of grammars varying in vocabulary size from
10 to 20k words, and perplexities in the range of 10 to 90k. The
in grammar average semantic error rate is 5.76% and average out
of vocabulary rate (OOV) of 12.89%. The test dialog state includes
5.5k sentences, a vocabulary size of 100, perplexity of 399k and
in grammar semantic error rate of 6.0% with OOV rate of 9.14%.
To estimate the initial underlying source 1 GMM, 1650 unlabelled
test dialog samples were used along with the training dialog samples
(discussed in section 4.2). The subsequent EM procedure (3) used
these same 1650 unlabelled samples and the 48k labelled training
set. fDETAC (3.3) was performed with the 48k labelled training in-
stances and the posteriors γu

sk (9) from the EM step. The remaining
3850 samples (from the 5.5k test dialog) were used in test.

4.1. Confidence Feature Space

The confidence feature space is 11 dimensional, composed of ob-
servations extracted from the ASR process. There has been ex-
tensive studies of features that are effective, including lattice based
[8], background model based [9], and heuristic search and acoustic
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based [10]. The mutual information between features and the binary
classes of accept/reject varies between 0.01 and 0.2 bits for the 48k
utterance training set.

4.2. EM Initialization and Model Sizes

The underlying source 1 and 2 classifiers p(y|x,ws,1,2) are initial-
ized to the same globally trained MCE model. Careful initialization
of the underlying source generating GMMs (eqs. 6, 7) is more criti-
cal. As discussed in section 2, source set 1 is responsible for model-
ing what is common between the training and testing feature spaces,
source set 2 is responsible for the feature space specific to training.
With that definition a reasonable technique for initialization of the
source set 1 GMM parameters is based on a KL metric between a
GMM built on the training data, and a GMM built on the test data.
Minimum KL distance components form source set 1 model param-
eters, maximum KL distance form source set 2 model parameters.
Mixture weights are then re-estimated with a standard EM step keep-
ing Gaussian parameters fixed and updating training data mixture
weights (αD

1k), (αD
2k) and test data mixture weights (αT

1k).
Source set 1 and 2 models (eqs. 6,7) are 4 mixture diagonal

GMMs. The underlying source set classifiers are 2 mixture diagonal
GMMs (as is the initializing global classifier).

5. EXPERIMENTS

Table 1 shows the component maximum symmetric KL distance be-
tween the unlabelled test data GMM GT (as described in (4.2)), and
the source set 1 GMM after the learning GS1,EM (3). The value of
the KL distance doesn’t tell us much, but the large (minimum) KL
between source set 1 and 2 GS1,EM ||GS2,EM after learning relative
to GT ||GS1,EM illustrates a mismatch in some portion of the feature
space. To measure the test time classifier performance p(y|x,ws1),

KL dist. gi gj gl gm Avg.

GT ||GS1,EM 4.17 4.03 2.32 1.21 2.93
GS1,EM ||GS2,EM 12.71 16.76 21.48 42.86 23.45

Table 1. Maximum KL distance between components of the test data
GMM GT and learned source set 1 GMM GS1,EM . Also shown is
Minimum KL between components of source set 1 and 2 GMMs.

(section 3.2) we look at two metrics: the average probability of miss
for false alarm probabilites of 2, 3 and 4% and the area under the
ROC curve (AUC). The AUC reflects the classifiers intrinsic abil-
ity to discriminate between the two classes [7] a value of 1.0 and the
classes are separable, 0.5 and the classification is random. In practice
the only metric that matters is the low false alarm miss probability,
but the classifiers intrinsic ability to separate is important here as we
expect the DET rotation to be able to take advantage of this. Figure
2 illustrates the S1 and S2 classifier low FA performance as a func-
tion of EM iteration. The degradation of the S2 classifier illustrates
the mismatch. From this figure we see the S1 classifier results in a
12.5% relative reduction in miss probability, and including fDETAC
we have 14.98% total relative reduction. Figure 3 shows the AUC
classifier performance as a function of EM iteration, the S2 classifier
mismatch performance is evident. Treating the area above the ROC
curve as that contributing to the overall error we see S1 classifier
training by the EM step results in an 11.2% relative reduction in er-
ror, and including fDETAC we have 15.54% total relative reduction.
As a fair comparison on the number of parameters (S1+S2), a 4 mix-
ture GMM global classifer p(y|x) has a low FA result=0.7534 and
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Fig. 2. EM Low FA result, p(y|x,ws,1,2), + 40th iter fDETAC.
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AUC=0.8038, so adding parameters doesn’t help (small degradation
vs. 2 mixture global could be overfitting with MCE).

6. CONCLUSIONS

We have presented a framework for unsupervised retraining of a clas-
sifier along with a technique to optimize this classifier in a desired
FA region. We feel these are extensions to the mixture regression
covariate shift framework [5] and Bayes error reshaping in the unsu-
pervised condition [6]. To our knowledge, this is the first time such
an approach is applied to an ASR task.
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